Palais R.S. Differential equations, mechanics, and computation (Providence, 2009). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаPalais R.S. Differential equations, mechanics, and computation / R.S.Palais, R.A.Palais. - Providence: American Mathematical Society; Princeton: Institute for Advanced Study, 2009. - xiii, 313 p.: ill. - (Student mathematical library. IAS/Park City mathematical subseries; vol.51). - Bibliogr.: p.307-309. - Ind.: p.311-313. - ISBN 978-0-8218-2138-1
 

Место хранения: 013 | Институт математики СО РАН | Новосибирск | Библиотека

Оглавление / Contents
 
IAS/Park City Mathematics Institute ............................ ix
Preface ........................................................ xi
Acknowledgments .............................................. xiii
Introduction .................................................... 1

Chapter 1  Differential Equations and Their Solutions ........... 5
1.1  First-Order ODE: Existence and Uniqueness .................. 5
1.2  Euler's Method ............................................ 16
1.3  Stationary Points and Closed Orbits ....................... 19
1.4  Continuity with Respect to Initial Conditions ............. 22
1.5  Chaos-Or a Butterfly Spoils Laplace's Dream ............... 25
1.6  Analytic ODE and Their Solutions .......................... 31
1.7  Invariance Properties of Flows ............................ 33

Chapter 2  Linear Differential Equations ....................... 37
2.1  First-Order Linear ODE .................................... 37
2.2  Nonautonomous First-Order Linear ODE ...................... 48
2.3  Coupled and Uncoupled Harmonic Operators .................. 50
2.4  Inhomogeneous Linear Differential Equations ............... 52
2.5  Asymptotic Stability of Nonlinear ODE ..................... 53
2.6  Forced Harmonic Oscillators ............................... 55
2.7  Exponential Growth and Ecological Models .................. 56

Chapter 3  Second-Order ODE and the Calculus of Variations ..... 63
3.1  Tangent Vectors and the Tangent Bundle .................... 63
3.2  Second-Order Differential Equations ....................... 66
3.3  The Calculus of Variations ................................ 68
3.4  The Euler-Lagrange Equations .............................. 70
3.5  Conservation Laws for Euler-Lagrange Equations ............ 73
3.6  Two Classic Examples ...................................... 75
3.7  Derivation of the Euler-Lagrange Equations ................ 78
3.8  More General Variations ................................... 80
3.9  The Theorem of E. Noether ................................. 81
3.10 Lagrangians Defining the Same Functionals ................. 82
3.11 Riemannian Metrics and Geodesies .......................... 85
3.12 A Preview of Classical Mechanics .......................... 86

Chapter 4  Newtonian Mechanics ................................. 91
4.1  Introduction .............................................. 91
4.2  Newton's Laws of Motion ................................... 92
4.3  Newtonian Kinematics ...................................... 96
4.4  Classical Mechanics as a Physical Theory .................. 99
4.5  Potential Functions and Conservation of Energy ........... 106
4.6  One-Dimensional Systems .................................. 111
4.7  The Third Law and Conservation Principles ................ 118
4.8  Synthesis and Analysis of Newtonian Systems .............. 122
4.9  Linear Systems and Harmonic Oscillators .................. 124
4.10. Small Oscillations about Equilibrium .................... 126

Chapter 5  Numerical Methods .................................. 133
5.1  Introduction ............................................. 133
5.2  Fundamental Examples and Their Behavior .................. 144
5.3  Summary of Method Behavior on Model Problems ............. 169
5.4  Paired Methods: Error, Step-Size, Order Control .......... 177
5.5  Behavior of Example Methods on a Model 2x2 System ........ 180
5.6  Stiff Systems and the Method of Lines .................... 187
5.7  Convergence Analysis: Euler's Method ..................... 213

Appendix A. Linear Algebra and Analysis ....................... 225
     A.l. Metric and Normed Spaces ............................ 225
     A.2. Inner-Product Spaces ................................ 227

Appendix B. The Magic of Iteration ............................ 233
     B.l. The Banach Contraction Principle .................... 233
     B.2. Newton's Method ..................................... 238
     B.3. The Inverse Function Theorem ........................ 240
     B.4. The Existence and Uniqueness Theorem for ODE ........ 241

Appendix C. Vector Fields as Differential Operators ........... 243

Appendix D. Coordinate Systems and Canonical Forms ............ 247
     D.l. Local Coordinates ................................... 247
     D.2. Some Canonical Forms ................................ 250

Appendix E. Parametrized Curves and Arclength ................. 255

Appendix F. Smoothness with Respect to Initial Conditions ..... 257

Appendix G. Canonical Form for Linear Operators ............... 259
     G.l. The Spectral Theorem ................................ 259

Appendix H. Runge-Kutta Methods ............................... 263

Appendix I. Multistep Methods ................................. 281

Appendix J. Iterative Interpolation and Its Error ............. 303

Bibliography .................................................. 307
Index ......................................................... 311


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:23:12 2019. Размер: 8,901 bytes.
Посещение N 1584 c 21.02.2012