Ecological informatics: scope, techniques, and applications (Berlin; Heidelberg; New York, 2006). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаEcological informatics: scope, techniques, and applications / ed. by F.Recknagel. - Berlin; Heidelberg; New York: Springer, 2006. - 2nd ed. - xxxvi, 496 p.: ill. + 1 computer optical disc. - Bibliogr. at the end of the chapters. - Ind.: p.479-481. - ISBN 3-540-28383-8
 

Место хранения: 040 | Институт биофизики СО РАН | Красноярск | Библиотека

Оглавление / Contents
 
Part I Introduction ............................................. 1

1  Ecological Applications of Fuzzy Logic ....................... 3
   1.1  Fuzzy Sets and Fuzzy Logic .............................. 3
   1.2  Fuzzy Approach to Ecological Modelling and Data
        Analysis ................................................ 4
   1.3  Fuzzy Classification: A Fuzzy Clustering Approach ....... 6
   1.4  Fuzzy Regionalisation: A Fuzzy Kriging Approach ......... 9
   1.5  Fuzzy Knowledge-Based Modelling ......................... 9
   1.6  Conclusions ............................................ 12
   References .................................................. 12

2  Ecological Applications of Qualitative Reasoning ............ 15
   2.1  Introduction ........................................... 15
   2.2  Why Use QR for Ecology? ................................ 16
   2.3  What is Qualitative Reasoning? ......................... 17
        2.3.1  A Working Example ............................... 18
        2.3.2  World-view: Ontological Distinctions ............ 19
               2.3.2.1  Component-based Approach ............... 19
               2.3.2.2  Process-based Approach ................. 21
               2.3.2.3  Constraint-based Approach .............. 22
               2.3.2.4  Suitability of Approaches .............. 23
        2.3.3  Inferring Behaviour from Structure .............. 23
        2.3.4  Qualitativeness and Representing Time ........... 25
        2.3.5  Causality ....................................... 27
        2.3.6  Model-fragments and Compositional Modelling ..... 30
   2.4  Tools and Software ..................................... 30
        2.4.1  Workspaces in Homer ............................. 31
        2.4.2  Building a Population Model ..................... 32
        2.4.3  Running and Inspecting Models with VisiGarp ..... 35
        2.4.4  Adding Migration to the Population model ........ 36
   2.5  Examples of QR-based Ecological Modelling .............. 39
        2.5.1  Population and Community Dynamics ............... 39
        2.5.2  Water Related Models ............................ 41
        2.5.3  Management and Sustainability ................... 42
        2.5.4  Details in Qualitative Algebra .................. 42
        2.5.5  Details in Automated Model Building ............. 43
        2.5.6  Diagnosis ....................................... 43
   2.6  Conclusion ............................................. 44
   References .................................................. 44

3  Ecological Applications of Non-Supervised Artificial
   Neural Networks ............................................. 49
   3.1  Introduction ........................................... 49
   3.2  How to Compute a Self-Organizing Map (SOM) with an
        Abundance Dataset? ..................................... 50
        3.2.1  A Dataset for Demonstrations .................... 50
        3.2.2  The Self-Organizing Map (SOM) Algorithm ......... 52
   3.3  How to Use a Self-Organizing Map with an Abundance
        Dataset? ............................................... 56
        3.3.1  Mapping the Stations ............................ 56
        3.3.2  Displaying a Variable ........................... 58
        3.3.3  Displaying an Abiotic Variable .................. 59
        3.3.4  Clustering with a SOM ........................... 60
   3.4  Discussion ............................................. 63
   3.5  Conclusion ............................................. 65
   References .................................................. 66

4  Ecological Applications of Genetic Algorithms ............... 69
   4.1  Introduction ........................................... 69
   4.2  Ecology and Ecological Modelling ....................... 70
   4.3  Genetic Algorithm Design Details ....................... 72
   4.4  Applications of Genetic Algorithms to Ecological
        Modelling .............................................. 74
   4.5  Predicting the Future with Genetic Algorithms .......... 78
   4.6  The Next Generation: Hybrids Genetic Algorithms ........ 79
   References .................................................. 80

5  Ecological Applications of Evolutionary Computation ......... 85
   5.1  Introduction ........................................... 85
   5.2  Ecological Modelling ................................... 86
        5.2.1  The Challenges of Ecological Modelling .......... 86
        5.2.2  Summary ......................................... 88
   5.3  Evolutionary Computation ............................... 88
        5.3.1  The Basic Evolutionary Algorithm ................ 90
        5.3.2  Summary ......................................... 93
   5.4  Ecological Modelling and Evolutionary Algorithms ....... 93
        5.4.1  Equation Discovery .............................. 93
        5.4.2  Optimisation of Difference Equations ............ 94
        5.4.3  Evolving Differential Equations ................. 95
        5.4.4  Rule Discovery .................................. 95
        5.4.5  Modelling Individual and Cooperative
               Behaviour ....................................... 97
        5.4.6  Predator-Prey Algorithms ....................... 100
        5.4.7  Modelling Hierarchical Ecosystems .............. 100
   5.5 Conclusion ............................................. 102
   References ................................................. 102

6  Ecological Applications of Adaptive Agents ................. 109
   6.1  Introduction .......................................... 109
   6.2  Adaptive Agents Framework ............................. 110
   6.3  Individual-Based Adaptive Agents ...................... 112
   6.4  State Variable-Based Adaptive Agents .................. 114
        6.4.1  Algal Species Simulation by Adaptive Agents .... 116
               6.4.1.1  Embodiment of Evolutionary
                        Computation in Agents ................. 116
               6.4.1.2  Adaptive Agents Bank .................. 117
        6.4.2  Pelagic Food Web Simulation by Adaptive
               Agents ......................................... 121
   6.5  Conclusions ........................................... 122
   Acknowledgements ........................................... 122
   References ................................................. 123

7  Bio-Inspired Design of Computer Hardware by Self-
   Replicating Cellular Automata .............................. 125
   7.1  Introduction .......................................... 125
   7.2  Cellular Automata ..................................... 126
   7.3  Von Neumann's Universal Constructor ................... 128
   7.4  Self-Replicating Loops ................................ 131
   7.5  Self-Replication in the Embryonics Project ............ 132
        7.5.1  Embryonics ..................................... 132
        7.5.2  The Tom Thumb Algorithm ........................ 136
               7.5.2.1  Construction of the Minimal Cell ...... 136
               7.5.2.2  Growth and Self-Replication ........... 140
               7.5.2.3  The LSL Acronym Design Example ........ 141
               7.5.2.4  Universal Construction ................ 144
   7.6  Conclusions ........................................... I45
   Acknowledgements ........................................... 146
   References ................................................. 146

Part II Prediction and Elucidation of Stream Ecosystems ....... 149

8  Development and Application of Predictive River Ecosystem
   Models Based On Classification Trees and Artificial
   Neural Networks ............................................ 151
   8.1  Introduction .......................................... 151
   8.2  Study Sites, Data Sources and Modelling Techniques .... 152
        8.2.1  The Zwalm River Basin .......................... 152
        8.2.2  Data Collection ................................ 153
        8.2.3  Classification Trees ........................... 154
        8.2.4  Artificial Neural Networks ..................... 155
        8.2.5  Model Assessment ............................... 156
   8.3  Results ............................................... 157
        8.3.1  Classification Trees ........................... 157
               8.3.1.1  Model Development and Validation ...... 157
               8.3.1.2  Application of Predictive
                        Classification Trees for River
                        Management ............................ 158
        8.3.2  Artificial Neural Networks ..................... 160
               8.3.2.1  Model Development and Validation ...... 160
               8.3.2.2  Application of Predictive Artificial
                        Neural Networks for River
                        Management ............................ 162
                        8.3.2.2.1  Prediction of
                                   Environmental Standards .... 162
                        8.3.2.2.2  Feasibility Analysis of
                                   River Restoration
                                   Options .................... 163
   8.4  Discussion ............................................ 164
   Acknowledgements ........................................... 165
   References ................................................. 165

9  Modelling Ecological Interrelations in Running Water
   Ecosystems with Artificial Neural Networks ................. 169
   9.1  Introduction .......................................... 169
   9.2  Materials and Methods ................................. 170
        9.2.1  DataBase ....................................... 170
        9.2.2  Data Pre-Processing ............................ 170
        9.2.3  Artificial Neural Network Types ................ 171
        9.2.4  Dimension Reduction ............................ 171
        9.2.5  Quality Measures ............................... 171
   9.3  Data Exploration with Unsupervised Learning Systems ... 172
   9.4  Correlations and Predictions with Supervised
        Learning Systems ...................................... 175
        9.4.1  Correlations and Predictions of Environmental
               Variables ...................................... 177
        9.4.2  Dependencies of Colonisation Patterns of
               Macro-Invertebrates on Water Quality and
               Habitat Characteristics ........................ 177
               9.4.2.1  Aquatic Insects in a Natural Stream,
                        the Breitenbach ....................... 177
               9.4.2.2  Anthropogenically Altered Streams ..... 180
        9.4.3  Bioindication .................................. 181
   9.5  Assessment of Model Quality and Visualisation
        Possibilities: Hybrid Networks ........................ 182
   9.6  Conclusions ........................................... 183
   Acknowledgements ........................................... 185
   References ................................................. 185

10 Non-linear Approach to Grouping, Dynamics and
   Organizational Informatics of Benthic Macroinvertebrate
   Communities in Streams by Artificial Neural Networks ....... 187
   10.1 Introduction .......................................... 187
   10.2 Grouping Through Self-Organization .................... 190
        10.2.1 Static Grouping ................................ 190
        10.2.2 Grouping Community Changes ..................... 203
   10.3 Prediction of Community Changes ....................... 207
        10.3.1 Multilayer Perceptron with Time Delay .......... 207
        10.3.2 Elman Network .................................. 211
        10.3.3 Fully Connected Recurrent Network .............. 214
        10.3.4 Impact of Environmental Factors Trained with
               the Recurrent Network .......................... 218
   10.4 Patterning Organizational Aspects of Community ........ 221
        10.4.1 Relationships among Hierarchical Levels in
               Communities .................................... 221
        10.4.2 Patterning of Exergy ........................... 227
   10.5 Summary and Conclusions ............................... 233
   Acknowledgements ........................................... 234
   References ................................................. 234

11 Elucidation of Hypothetical Relationships between Habitat
   Conditions and Macroinvertebrate Assemblages in
   Freshwater Streams by Artificial Neural Networks ........... 239
   11.1 Introduction .......................................... 239
   11.2 Study Site ............................................ 240
   11.3 Materials and Methods ................................. 240
        11.3.1 Data ........................................... 240
        11.3.2 Neural Network Modelling ....................... 241
   11.3.3 Sensitivity Analysis ................................ 242
   11.4 Results and Discussion ................................ 243
   11.4.1 Elucidation of Hypothetical Relationships ........... 243
   11.4.2 Discovery of Contradictory Relationships ............ 247
   11.4.3 Limitations of the Method ........................... 248
   11.5 Conclusions ........................................... 249
   References ................................................. 250

Part III Prediction and Elucidation of River Ecosystems ....... 253

12 Prediction and Elucidation of Population Dynamics of the
   Blue-green Algae Microcystis aeruginosa and the Diatom
   Stephanodiscus hantzschii in the Nakdong River-Reservoir
   System (South Korea) by a Recurrent Artificial Neural
   Network .................................................... 255
   12.1 Introduction .......................................... 255
   12.2 Description of the Study Site ......................... 256
   12.3 Materials and Methods ................................. 257
        12.3.1 Data Collection and Analysis ................... 257
        12.3.2 Modelling the Phytoplankton Dynamics ........... 259
        12.3.3 Neural Network Validation and Knowledge
               Discovery on Algal Succession .................. 261
   12.4 Results and Discussion ................................ 261
        12.4.1 Limnological Aspects and Plankton Dynamics in
               the Lower Nakdong River ........................ 261
        12.4.2 Configuring the Neural Network Architecture
               for Predictability ............................. 263
        12.4.3 Elucidation of Ecological Hypothesis ........... 265
               12.4.3.1 Microcystis aeruginosa ................ 267
               12.4.3.2 Stephanodiscus hantzschii ............. 267
   12.5 Implications of Ecological Informatics for
        Limnology ............................................. 268
   12.6 Conclusions ........................................... 269
   Acknowledgements ........................................... 270
   References ................................................. 270

13 An Evaluation of Methods for the Selection of Inputs for
   an Artificial Neural Network Based River Model ............. 275
   13.1 Introduction .......................................... 275
   13.2 Methods ............................................... 277
        13.2.1 Unsupervised Input Preprocessing ............... 277
        13.2.2 Supervised Input Determination ................. 280
   13.3 Case Study ............................................ 282
   13.4 Model Development ..................................... 282
        13.4.1 Performance Measures and Model Validation ...... 283
        13.4.2 Data Division .................................. 283
        13.4.3 Determination of Model Inputs .................. 284
   13.5 Results and Discussion ................................ 284
   13.6 Conclusions ........................................... 290
   Acknowledgements ........................................... 291
   References ................................................. 291

14 Utility of Sensitivity Analysis by Artificial Neural
   Network Models to Study Patterns of Endemic Fish Species ... 293
   14.1 Introduction .......................................... 293
   14.2 Contribution of Environmental Variables ............... 294
   14.3 Application to Ecological Data ........................ 295
   14.4 Results ............................................... 296
        14.4.1 Predictive Power ............................... 296
        14.4.2 Sensitivity Analysis ........................... 298
   14.5 Discussion ............................................ 302
   14.6 Conclusions ........................................... 304
   References ................................................. 304

Part IV Prediction and Elucidation of Lake and Marine
        Ecosystems ............................................ 307

15 A Comparison between Neural Network Based and Multiple
   Regression Models in Chlorophyll-a Estimation .............. 309
   15.1 Introduction .......................................... 309
        15.1.1 Eutrophication in Water Bodies and Relevant
               Models ......................................... 309
        15.1.2 Artificial Neural Networks ..................... 310
        15.1.3 The Use of Artificial Neural Networks in
               Environmental Modelling ........................ 311
   15.2 Data and Lakes ........................................ 311
   15.3 Methodology ........................................... 313
        15.3.1 Artificial Neural Network Approach ............. 314
               15.3.1.1 Training Method ....................... 314
               15.3.1.2 Data Pre-Processing ................... 316
               15.3.1.3 Improving Generalisation .............. 316
        15.3.2 Multiple Regression Modelling Approach ......... 317
   15.4 Results ............................................... 317
   15.5 Conclusions and Recommendations ....................... 320
        15.5.1 Conclusions .................................... 320
        15.5.2 Recommendations ................................ 321
   Acknowledgments ............................................ 322
   References ................................................. 322

16 Artificial Neural Network Approach to Unravel and
   Forecast Algal Population Dynamics of Two Lakes Different
   in Morphometry and Eutrophication .......................... 325
   16.1 Introduction .......................................... 325
   16.2 Materials and Methods ................................. 326
        16.2.1 Study Sites and Data ........................... 326
        16.2.2 Methods ........................................ 327
   16.3 Results ............................................... 330
        16.3.1 Forecasting Seasonal Algal Abundances and
               Succession ..................................... 330
        16.3.2 Relationships between Algal Abundances and
               Water Quality Conditions ....................... 331
        16.3.3 Relationships between Algal Abundances,
               Seasons and Water Quality Changes .............. 336
   16.4 Discussion ............................................ 340
        16.4.1 Forecasting Seasonal Algal Abundances and
               Succession ..................................... 340
        16.4.2 Relationships between Algal Abundances,
               Seasons and Water Quality Changes .............. 341
   16.5 Conclusions ........................................... 344
   Acknowledgements ........................................... 344
   References ................................................. 344

17 Hybrid Evolutionary Algorithm* for Rule Set Discovery in
   Time-Series Data to Forecast and Explain Algal Population
   Dynamics  in  Two  Lakes  Different  in  Morphometry and
   Eutrophication ............................................. 347
   17.1 Introduction .......................................... 347
   17.2 Materials and Methods ................................. 348
        17.2.1 Study Sites and Data ........................... 348
        17.2.2 Hybrid Evolutionary Algorithms ................. 349
               17.2.2.1 Structure Optimisation of Rule Sets
                        Using GP .............................. 351
               17.2.2.2 Parameter optimization of Rule Sets
                        Using a General Genetic Algorithm ..... 356
               17.2.2.3 Forecasting by Rule Sets .............. 357
   17.3 Case Studies Lake Kasumigaura and Lake Soyang ......... 358
        17.3.1 Parameter Settings and Measures ................ 358
        17.3.2 Results and Discussion ......................... 359
   17.4 Conclusions ........................................... 366
   References ................................................. 366

18 Multivariate Time-Series Prediction of Marine Zooplankton
   by Artificial Neural Networks .............................. 369
   18.1 Introduction .......................................... 369
   18.2 Generalisation ........................................ 371
   18.3 Automatic Termination of Training ..................... 374
   18.4 Case Study: Zooplankton Prediction .................... 378
   18.5 Conclusions ........................................... 381
   Acknowledgement ............................................ 382
   References ................................................. 382

19 Classification of Fish Stock-Recruitment Relationships in
   Different Environmental regimes by Fuzzy Logic Combined
   with a Bootstrap Re-sampling Approach ...................... 385
   19.1 Introduction .......................................... 385
   19.2 Fuzzy Stock-Recruitment Model ......................... 386
        19.2.1 Traditional Stock-Recruitment Model ............ 386
        19.2.2 Fuzzy Stock-recruitment Model .................. 388
               19.2.2.1 Fuzzy Membership Function (FMF) ....... 389
               19.2.2.2 Fuzzy Rules ........................... 390
               19.2.2.3 Fuzzy Reasoning ....................... 391
   19.3 Hybrid Optimal Learning and Bootstrap Re-sampling
        Algorithms ............................................ 393
        19.3.1 Hybrid Optimal Learning Algorithms ............. 394
        19.3.2 Bootstrap re-sampling Procedure ................ 396
   19.4 Two Real Data Analyses ................................ 397
        19.4.1 West Coast Vancouver Island Herring Stock ...... 397
               19.4.1.1 Data Prescription and Preliminary
                        Analyses .............................. 397
               19.4.1.2 Fuzzy-SR Model Analysis ............... 398
               19.4.1.3 Bootstrap Re-sampling Analysis ........ 400
        19.4.2 Southeast Alaska Pink Salmon ................... 402
               19.4.2.1 Data Prescription and Preliminary
                        Analysis .............................. 402
               19.4.2.2 Fuzzy-SR Model Analysis ............... 403
               19.4.2.3 Bootstrap Re-sampling Analysis ........ 404
   19.5 Summary and Discussion ................................ 404
   Acknowledgements ........................................... 406
   References ................................................. 406

20 Computational Assemblage of Ordinary Differential
   Equations for Chlorophyll-a Using a Lake Process Equation
   Library and Measured Data of Lake Kasumigaura .............. 409
   20.1 Introduction .......................................... 409
   20.2 Methods and Materials ................................. 410
        20.2.1 LAGRAMGE: Computational Assemblage of ODE ...... 410
        20.2.2 Domain Knowledge Library for Lake Ecosystems ... 411
        20.2.3 Task Specification ............................. 412
        20.2.4 Data of Lake Kasumigaura ....................... 415
        20.2.5 Experimental Framework ......................... 416
   20.3 Results and Discussion ................................ 418
        20.3.1 Experiment 1 ................................... 418
        20.3.2 Experiment 2 ................................... 422
        20.3.3 Experiment 3 ................................... 424
   20.4 Conclusions
   References ................................................. 427

Part V Classification of Ecological Images at Micro and
   Macro Scale ................................................ 429

21 Identification of Marine Microalgae by Neural Network
   Analysis of Simple Descriptors of Flow Cytometric Pulse
   Shapes ..................................................... 431
   21.1 Introduction .......................................... 431
   21.2 Materials and Methods ................................. 435
        21.2.1 Pulse Shape Extraction ......................... 435
        21.2.2 Data Filtering ................................. 435
        21.2.3 Data Transformation ............................ 435
        21.2.4 Principal Component Analysis ................... 436
        21.2.5 Neural Network Analysis ........................ 438
        21.2.6 Hardware and Software .......................... 439
   21.3 Results ............................................... 439
   21.4 Discussion ............................................ 441
   21.5 Conclusions ........................................... 441
   Acknowledgement ............................................ 441
   References ................................................. 442

22 Age Estimation of Fish Using a Probabilistic Neural
   Network .................................................... 445
   22.1 Introduction .......................................... 445
   22.2 Traditional Methods of Age Estimation ................. 445
   22.3 Approaches to Automation in Fish Age Estimation ....... 447
   22.4 The Application of a Probabilistic Neural Network to
        Fish Age Estimation ................................... 448
   22.5 Results ............................................... 452
   22.6 Discussion ............................................ 454
   Acknowledgements ........................................... 456
   References ................................................. 456

23 Pattern Recognition and Classification of Remotely Sensed
   Images by Artificial Neural Networks ....................... 459
   23.1 Introduction .......................................... 459
   23.2 Neural Networks in Remote Sensing ..................... 460
        23.2.1 Classification Applications .................... 460
        23.2.2 Regression Applications ........................ 461
   23.3 The Neural Networks Used in Remote Sensing ............ 461
        23.3.1 Feedforward Neural Networks .................... 462
               23.3.1.1 Multi-Layer Perceptron (MLP) .......... 463
               23.3.1.2 Radial Basis Function (RBF) ........... 464
               23.3.1.3 Probabilistic Neural Networks (PNN) ... 465
               23.3.1.4 Generalised Regression Neural
                        Networks (GRNN) ....................... 466
               23.3.1.5 Other Network Types ................... 467
   23.4 Current Status ........................................ 468
        23.4.1 An Example of Neural Networks for
               Classification ................................. 469
        23.4.2 Concerns with neural Networks .................. 471
   23.5 Conclusions ........................................... 472
   Acknowledgments ............................................ 473
   References ................................................. 473

Index ......................................................... 479

Appendix ...................................................... 483


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:23:12 2019. Размер: 32,273 bytes.
Посещение N 1730 c 21.02.2012