De Gosson M.A. Symplectic methods in harmonic analysis and in mathematical physics (Basel, 2011). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаDe Gosson M.A. Symplectic methods in harmonic analysis and in mathematical physics / M.A. de Gosson. - Basel: Birkhäuser, 2011. - xxiv, 337 p. - (Pseudo-differential operators, theory and applications; vol.7). - Bibliogr.: p.325-334. - Ind.: p.335-337. - ISBN 978-3-7643-9991-7
 

Место хранения: 013 | Институт математики СО РАН | Новосибирск | Библиотека

Оглавление / Contents
 
Foreword ..................................................... xiii
Preface ........................................................ xv
   Description of the book ..................................... xv
Prologue ...................................................... xxi
   Some notation .............................................. xxi
   The space fig.2(fig.1n) and its dual fig.2'(fig.1n) ..................... xxii
   The Fourier transform .................................... xxiii

Part I Symplectic Mechanics

1  Hamiltonian Mechanics in a Nutshell
   1.1  Hamilton's equations .................................... 3
        1.1.1  Definition of Hamiltonian systems ................ 3
        1.1.2  A simple existence and uniqueness result ......... 4
   1.2  Hamiltonian fields and flows ............................ 6
        1.2.1  The Hamilton vector field ........................ 6
        1.2.2  The symplectic character of Hamiltonian flows .... 8
        1.2.3  Poisson brackets ................................ 10
   1.3  Additional topics ...................................... 11
        1.3.1  Hamilton-Jacobi theory .......................... 11
        1.3.2  The invariant volume form ....................... 13
        1.3.3  The problem of "Quantization" ................... 16

2  The Symplectic Group
   2.1  Symplectic matrices .................................... 20
        2.1.1  Definition of the symplectic group .............. 20
        2.1.2  Symplectic block-matrices ....................... 20
        2.1.3  The affine symplectic group ..................... 21
   2.2  Symplectic forms ....................................... 22
        2.2.1   The notion of symplectic form .................. 22
        2.2.2  Differential formulation ........................ 23
   2.3  The unitary groups U(n, fig.4) and U(2n, fig.1) ............... 25
        2.3.1  A useful monomorphism ........................... 25
        2.3.2  Symplectic rotations ............................ 25
        2.3.3  Diagonalization and polar decomposition ......... 26
   2.4  Symplectic bases and Lagrangian planes ................. 28
        2.4.1  Definition of a symplectic basis ................ 28
        2.4.2  The Lagrangian Grassmannian ..................... 29

3  Free Symplectic Matrices
   3.1  Generating functions ................................... 31
        3.1.1  Definition of a free symplectic matrix .......... 31
        3.1.2  The notion of generating function ............... 33
        3.1.3  Application to the Hamilton-Jacobi equation ..... 35
   3.2  A factorization result ................................. 38
        3.2.1  Statement and proof ............................. 38
        3.2.2  Application: generators of Sp(2n, fig.1) ........... 39

4  The Group of Hamiltonian Symplectomorphisms
   4.1  The group Symp(2n, fig.1) ................................. 41
        4.1.1  Definition and examples ......................... 41
   4.2  Hamiltonian symplectomorphisms ......................... 43
        4.2.1  Symplectic covariance of Hamiltonian flows ...... 43
        4.2.2  The group Ham(2n, fig.1) ........................... 44
   4.3  The symplectic Lie algebra ............................. 47
        4.3.1  Matrix characterization of sp(2n, fig.1) ........... 48
        4.3.2  The exponential mapping ......................... 49

5  Symplectic Capacities
   5.1  Gromov's theorem and symplectic capacities ............. 51
        5.1.1  Statement of Gromov's theorem ................... 51
        5.1.2  Proof of Gromov's theorem in the affine case .... 52
   5.2  The notion of symplectic capacity ...................... 55
        5.2.1  Definition and existence ........................ 55
        5.2.2  The symplectic capacity of an ellipsoid ......... 59
   5.3  Other symplectic capacities ............................ 61
        5.3.1  The Hofer-Zehnder capacity ...................... 61
        5.3.2  The Ekeland-Hofer capacities .................... 62

6  Uncertainty Principles
   6.1  The Robertson-Schrodinger inequalities ................. 66
        6.1.1  The covariance matrix ........................... 66
        6.1.2  A strong version of the Robertson-Schrodinger
               uncertainty principle ........................... 67
        6.1.3  Symplectic capacity and the strong
               uncertainty principle ........................... 70
   6.2  Hardy's uncertainty principle .......................... 71
        6.2.1  Two useful lemmas ............................... 72
        6.2.2  Proof of the multi-dimensional Hardy
               uncertainty principle ........................... 74
        6.2.3  Geometric interpretation ........................ 76

Part II Harmonic Analysis in Symplectic Spaces

7  The Metaplectic Group
   7.1  The metaplectic representation ......................... 79
        7.1.1  A preliminary remark, and a caveat .............. 80
        7.1.2  Quadratic Fourier transforms .................... 80
   7.2  The projection fig.5Мр ..................................... 84
        7.2.1  Precise statement ............................... 84
        7.2.2  Dependence on ħ ................................. 85
   7.3  Construction of fig.5Мр .................................... 87
        7.3.1  The group Diff(1)(n) ............................. 87
        7.3.2  Construction of the projection .................. 89

8  Heisenberg-Weyl and Grossmann-Royer Operators
   8.1  Dynamical motivation, and definition ................... 91
        8.1.1  The displacement Hamiltonian .................... 91
        8.1.2  The Heisenberg-Weyl operators ................... 93
        8.1.3  The symplectic covariance property of the HW
               operators ....................................... 95
   8.2  The Heisenberg group ................................... 96
        8.2.1  The canonical commutation relations ............. 97
        8.2.2  Heisenberg group and Schrodinger
               representation .................................. 98
        8.2.3  The Stone-von Neumann theorem .................. 100
   8.3  The Grossmann-Royer operators ......................... 102
        8.3.1  The symplectic Fourier transform ............... 102
        8.3.2  Definition of the Grossmann-Royer operators .... 104
        8.3.3  Symplectic covariance .......................... 106
   8.4  Weyl-Heisenberg frames ................................ 107
        8.4.1  The notion of frame ............................ 108
        8.4.2  Weyl-Heisenberg frames ......................... 111
        8.4.3  A useful "dictionary" .......................... 113

9  Cross-ambiguity and Wigner Functions
   9.1  The cross-ambiguity function .......................... 117
        9.1.1  Definition of А(ψ, ϕ) .......................... 117
        9.1.2  Elementary properties of the cross-ambiguity
               function ....................................... 119
   9.2  The cross-Wigner transform ............................ 120
        9.2.1  Definition and first properties of W(ψ, ϕ) ..... 120
        9.2.2  Translations of Wigner transforms .............. 122
   9.3  Relations between А(ψ, ϕ), W(ψ, ϕ), and the STFT ...... 123
        9.3.1  Two simple formulas ............................ 123
        9.3.2  The short-time Fourier transform ............... 125
        9.3.3  The Cohen class ................................ 126
   9.4  The Moyal identity .................................... 128
        9.4.1  Statement and proof ............................ 128
        9.4.2  An inversion formula ........................... 130
   9.5  Continuity and growth properties ...................... 132
        9.5.1  Continuity of А(ψ, ϕ) and W(ψ, ϕ) .............. 132
        9.5.2  Decay properties of А(ψ, ϕ) and W(ψ, ϕ) ........ 134

10 The Weyl Correspondence
   10.1 The Weyl correspondence ............................... 137
        10.1.1 First definitions and properties ............... 137
        10.1.2 Definition using the Wigner transform .......... 140
        10.1.3 Probabilistic interpretation ................... 142
        10.1.4 The kernel of a Weyl operator .................. 144
   10.2 Adjoints and products ................................. 146
        10.2.1 The adjoint of a Weyl operator ................. 146
        10.2.2 Composition formulas ........................... 147
   10.3 Symplectic covariance of Weyl operators ............... 150
        10.3.1 Statement and proof of the symplectic
               covariance property ............................ 150
        10.3.2 Covariance under affine symplectomorphisms ..... 151
   10.4 Weyl operators as pseudo-differential operators ....... 152
        10.4.1 The notion of pseudo-differential operator ..... 153
        10.4.2 The kernel of a Weyl operator revisited ........ 155
        10.4.3 Justification in the case α fig.6 Sm ............... 156
   10.5 Regularity results for Weyl operators ................. 158
        10.5.1 Some general results ........................... 158
        10.5.2 Symbols in Lq spaces ........................... 160

11 Coherent States and Anti-Wick Quantization
   11.1 Coherent states ....................................... 163
        11.1.1 A physical motivation .......................... 163
        11.1.2 Properties of coherent states .................. 164
   11.2 Wigner transforms of Gaussians ........................ 169
        11.2.1 Some explicit formulas ......................... 169
        11.2.2 The cross-Wigner transform of a pair of
               Gaussians ...................................... 171
   11.3 Squeezed coherent states .............................. 172
        11.3.1 Definition and characterization ................ 173
        11.3.2 Explicit action of Mp(2n, fig.1) on squeezed
               states ......................................... 175
   11.4 Anti-Wick quantization ................................ 177
        11.4.1 Definition in terms of coherent states ......... 178
        11.4.2 The Weyl symbol of an anti-Wick operator ....... 180
        11.4.3 Some regularity results ........................ 181

12 Hubert-Schmidt and Trace Class Operators
   12.1 Hilbert-Schmidt operators ............................. 185
        12.1.1 Definition and general properties .............. 185
        12.1.2 Hilbert-Schmidt operators on L2(fig.1n) ........... 188
   12.2 Trace class operators ................................. 189
        12.2.1 The trace of a positive operator ............... 189
        12.2.2 General trace class operators .................. 193
   12.3 The trace of a Weyl operator .......................... 198
        12.3.1 Heuristic discussion ........................... 198
        12.3.2 Some rigorous results .......................... 200

13 Density Operator and Quantum States
   13.1 The density operator .................................. 205
        13.1.1 Pure and mixed quantum states .................. 206
   13.2 The uncertainty principle revisited ................... 210
        13.2.1 The strong uncertainty principle for the
               density operator ............................... 210
        13.2.2 Sub-Gaussian estimates ......................... 212
        13.2.3 Positivity issues and the KLM conditions ....... 215

Part III Pseudo-differential Operators and Function Spaces

14 Shubin's Global Operator Calculus
   14.1 The Shubin classes .................................... 223
        14.1.1 Generalities ................................... 223
        14.1.2 Definitions and preliminary results ............ 225
        14.1.3 Asymptotic expansions of symbols ............... 229
   14.2 More general operators ... which are not more
        general! .............................................. 230
        14.2.1 More general classes of symbols ................ 231
        14.2.2 A reduction result ............................. 232
   14.3 Relations between kernels and symbols ................. 236
        14.3.1 A general result ............................... 236
        14.3.2 Application: Wigner and Rihaczek
               distributions .................................. 237
   14.4 Adjoints and products ................................. 239
        14.4.1 The transpose and adjoint operators ............ 239
        14.4.2 Composition formulas ........................... 240
   14.5 Proof of Theorem 330 .................................. 243

Part IV Applications

15 The Schrodinger Equation
   15.1 The case of quadratic Hamiltonians .................... 247
        15.1.1 Preliminaries .................................. 248
        15.1.2 Quadratic Hamiltonians ......................... 249
        15.1.3 Exact solutions of the Schrodinger equation .... 252
   15.2 The general case ...................................... 254
        15.2.1 Symplectic covariance as a characteristic
               property of Weyl quantization .................. 254
        15.2.2 Quantum evolution groups and Stone's theorem ... 256
        15.2.3 Application to Schrodinger's equation .......... 256

16 The Feichtinger Algebra
   16.1 Definition and first properties ....................... 261
        16.1.1 Definition of fig.20(fig.1n) .......................... 262
        16.1.2 First properties of fig.20(fig.1n) .................... 263
   16.2 Invariance and Banach algebra properties .............. 266
        16.2.1 Metaplectic invariance of the Feichtinger
               algebra ........................................ 266
        16.2.2 The algebra property of fig.20(fig.1n) ................ 268
   16.3 A minimality property for fig.20(fig.1n) ..................... 270
        16.3.1 Heisenberg-Weyl expansions ..................... 270
        16.3.2 The minimality property ........................ 271
   16.4 A Banach Gelfand triple ............................... 271
        16.4.1 The dual space fig.2'0(fig.1n) ........................ 272
        16.4.2 The Gelfand triple (fig.20, L2, fig.2'0) .............. 273

17 The Modulation Spaces Mqs
   17.1 The Lq spaces, 1 ≤ q <  .............................. 275
        17.1.1 Definitions .................................... 275
        17.1.2 Weighted Lq spaces ............................. 278
   17.2 The modulation spaces Mqs ............................. 281
        17.2.1 Definition of Mqs .............................. 282
        17.2.2 Metaplectic and Heisenberg-Weyl invariance
               properties ..................................... 284
   17.3 The modulation spaces Ms ............................. 285
        17.3.1 The weighted spaces Ms ........................ 285
        17.3.2 The spaces Ms ................................. 286
   17.4 The modulation spaces Ms∞,1 ........................... 287
        17.4.1 Definition and first properties ................ 288
        17.4.2 Weyl operators with symbols in Ms∞,1 ........... 290

18 Bopp Pseudo-differential Operators
   18.1 Introduction and motivation ........................... 292
        18.1.1 Bopp pseudo-differential operators ............. 293
        18.1.2 Bopp operators viewed as Weyl operators ........ 295
        18.1.3 Adjoints and a composition formula ............. 297
        18.1.4 Symplectic covariance of Bopp operators ........ 298
   18.2 Intertwiners .......................................... 299
        18.2.1 Windowed wavepacket transforms ................. 299
        18.2.2 The intertwining property ...................... 302
   18.3 Regularity results for Bopp operators ................. 303
        18.3.1 Boundedness results ............................ 303
        18.3.2 Global hypoellipticity properties .............. 304

19 Applications of Bopp Quantization
   19.1 Spectral results for Bopp operators ................... 307
        19.1.1 A fundamental property of the intertwiners ..... 307
        19.1.2 Generalized eigenvalues and eigenvectors
               of a Bopp operator ............................. 309
        19.1.3 Application: the Landau problem ................ 312
   19.2 Bopp calculus and deformation quantization ............ 314
        19.2.1 Deformation quantization: motivation ........... 315
        19.2.2 The Moyal product and bracket .................. 316
   19.3 Non-commutative quantum mechanics ..................... 318
        19.3.1 Background ..................................... 318
        19.3.2 The operators fig.3ω(z0) and Fω .................... 320

Bibliography .................................................. 325

Index ......................................................... 335


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:23:10 2019. Размер: 23,007 bytes.
Посещение N 1741 c 21.02.2012