Preface ..................................................... IX
1 Basic Principles of Fluorescence Spectroscopy ................ 1
1.1 Absorption and Emission of Light ........................ 1
1.2 Spectroscopic Transition Strengths ...................... 5
1.3 Lambert-Beer Law and Absorption Spectroscopy ............ 7
1.4 Fluorophore Dimerization and Isosbestic Points .......... 9
1.5 Franck-Condon Principle ................................ 12
1.6 Temperature Effects on Absorption and Emission
Spectra ................................................ 15
1.7 Fluorescence and Competing Processes ................... 17
1.8 Stokes Shift, Solvent Relaxation, and Solvatochroism ... 20
1.9 Fluorescence Quantum Yield and Lifetime ................ 22
1.10 Fluorescence Anisotropy ................................ 27
References .................................................. 29
2 Fluorophores and Fluorescent Labels ......................... 31
2.1 Natural Fluorophores ................................... 31
2.2 Organic Fluorophores ................................... 35
2.3 Different Fluorophore Classes .......................... 38
2.4 Multichromophoric Labels ............................... 49
2.5 Nanocrystals ........................................... 52
References .................................................. 56
3 Fluorophore Labeling for Single-Molecule Fluorescence
Spectroscopy (SMFS) ......................................... 61
3.1 In Vitro Fluorescence Labeling ......................... 61
3.2 Fluorescence Labeling in Living Cells .................. 69
References .................................................. 80
4 Fluorophore Selection for Single-Molecule Fluorescence
Spectroscopy (SMFS) and Photobleaching Pathways ............. 85
References .................................................. 91
5 Fluorescence Correlation Spectroscopy ....................... 93
5.1 Introduction ........................................... 93
5.2 Optical Set-Up ......................................... 98
5.3 Data Acquisition and Evaluation ........................ 99
5.4 Milliseconds to Seconds: Diffusion and
Concentration ......................................... 103
5.5 Nanoseconds to Microseconds: Photophysics,
Conformational Fluctuations, Binding Dynamics ......... 120
5.6 Picoseconds to Nanoseconds: Rotational Diffusion and
Fluorescence Antibunching ............................. 122
5.7 Fluorescence Lifetime Correlation Spectroscopy ........ 135
5.8 Conclusion ............................................ 143
References ................................................. 143
6 Excited State Energy Transfer .............................. 147
6.1 Introduction .......................................... 147
6.2 Theory of (Forster) Energy Transfer ................... 148
6.3 Experimental Approach for Single-Pair FRET-
Experiments ........................................... 157
6.4 Examples and Applications of FRET ..................... 161
References ................................................. 183
7 Photoinduced Electron Transfer (PET) Reactions ............. 189
7.1 Fluorescence Quenching by PET ......................... 189
7.2 Single-Molecule Fluorescence Spectroscopy to Study
PET ................................................... 192
7.3 Single-Molecule Sensitive Fluorescence Sensors Based
on PET ................................................ 199
7.4 PET Reporter System ................................... 202
7.5 Monitoring Conformational Dynamics and Protein
Folding by PET ........................................ 205
7.6 Biological and Diagnostic Applications ................ 209
References ................................................. 215
8 Super-Resolution Fluorescence Imaging ...................... 219
8.1 Diffraction Barrier of Optical Microscopy ............. 219
8.2 Multi-Photon and Structured Illumination Microscopy ... 221
8.3 Stimulated Emission Depletion ......................... 223
8.4 Single-Molecule Based Photoswitching Microscopy ....... 226
8.5 Background and Principles of Single-Molecule Based
Photoswitching Microscopy Methods ..................... 229
8.6 Temporal Resolution of Super-Resolution Imaging
Methods ............................................... 236
References ................................................. 237
9 Single-Molecule Enzymatics ................................. 241
9.1 Introduction: Why Study Enzymes on a Single-Molecule
Level? ................................................ 241
9.2 Biochemical Principles of Enzymatic Activity:
the Michaelis-Menten Model ............................ 242
9.3 "Looking" at Individual Enzymes ....................... 243
9.4 Data Analysis of Fluorescence Intensity Time Traces
of Single-Turnover Experiments ........................ 264
9.5 Conclusions ........................................... 267
References ................................................. 268
Index ...................................................... 273
|