Chang H.-C. Electrokinetically driven microfluidics and nanofluidics (Cambridge; New York, 2010). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаChang H.-C. Electrokinetically driven microfluidics and nanofluidics / H.-C.Chang, L.Y.Yeo. - Cambridge; New York: Cambridge University Press, 2010. - xvi, 508 p., [8] p. of plates: ill. (some col.). - Bibliogr.: p.459-474. - Ind.: p.475-508. - ISBN 978-0-521-86025-3
 

Оглавление / Contents
 
Preface ...................................................... xiii

1  Introduction and Fundamental Concepts ........................ 1
   1.1  Electrokinetic Mechanisms for Microfluidic and
        Nanofluidic Transport ................................... 1
        1.1.1  Introduction to Microfluidic and Nanofluidic
               Systems .......................................... 1
        1.1.2  Microscale and Nanoscale Electrokinetic
               Transport ........................................ 5
        1.1.3  Organization ..................................... 8
   1.2  Electrostatics .......................................... 8
        1.2.1  Coulomb's Law .................................... 9
        1.2.2  Electric Field and Potential .................... 10
        1.2.3  Charge Density .................................. 11
        1.2.4  Electric-Field Vector Relationships ............. 11
        1.2.5  Gauss' Law: The Flux of the Electric Field ...... 12
   1.3  Fundamental Concepts of Electrokinetic Theories ........ 14
        1.3.1  Constitutive Relations Governing Continuum
               Hydrodynamics ................................... 14
        1.3.2  Induced Dipoles, Interfacial Conditions, and
               the Maxwell Stress Tensor ....................... 16
        1.3.3  Electrokinetic Actuation of Dielectric
               Liquids - Gradients in the Maxwell Pressure ..... 20
        1.3.4  Constitutive Equation for Ion Transport ......... 29
2  Classical Equilibrium Theory Due to Surface Charges ......... 35
   2.1  The Debye Double Layer ................................. 35
        2.1.1  Surface Charging ................................ 35
        2.1.2  Concentration Polarization of Ions -
               The Screening Effect ............................ 36
   2.2  Poisson-Boltzmann Distribution ......................... 36
        2.2.1  The Poisson-Boltzmann Distribution and Surface
               Electric Field .................................. 36
        2.2.2  Osmotic Pressure, Conservative Force, and
               Stability of the Poisson-Boltzmann
               Distribution .................................... 39
        2.2.3  Repulsive Forces Between Charged or Constant-
               Potential Particles in Electrolytes Under
               Poisson-Boltzmann Equilibrium ................... 41
   2.3  The Debye-Huckel Theory ................................ 45
   2.4  Nonlinear Analysis of the Poisson-Boltzmann
        Equilibrium in the Debye Layer ......................... 47
   2.5  Extensions to the Diffuse Double Layer Theory .......... 53
   2.6  Attraction Between Identical Particles Due to
        Symmetry Breaking ...................................... 56
   2.7  Overlapping Double Layers in Nanopores: Pore
        Conductance and Threshold Field for Electro-Osmotic
        Flow ................................................... 65
   2.8  Double Layer Formation and Relaxation Dynamics ......... 72
   2.9  Equilibrium Double Layer Electrokinetic Phenomena ...... 73
3  Electro-Osmotic Transport ................................... 76
   3.1  Electro-Osmosis ........................................ 76
   3.2  Smoluchowski Slip in Microchannels ..................... 77
   3.3  Electro-Osmotic Slip Velocity with Bulk Concentration
        Gradients: Formal Asymptotics .......................... 81
   3.4  Electro-Osmotic Flow in Nanochannels ................... 86
   3.5  Mixed or Frustrated Flows .............................. 88
   3.6  DC Electrokinetic Pumps ................................ 89
   3.7  Electric Field and Hydrodynamic Streamline
        Similarity ............................................. 97
   3.8  Frustrated Flow and Vortex Formation Due to pH
        Gradients .............................................. 99
   3.9  Conductivity-Gradient-Driven Electrohydrodynamic
        Instabilities ......................................... 103
        3.9.1  Conductivity Gradients in the Direction of
               the Applied Field .............................. 104
        3.9.2  Conductivity Gradients Transverse to the
               Direction of the Applied Field ................. 112
   3.10 Hydrodynamic Dispersion and Channel Profiling ......... 116
   3.11 Electro viscous Effects Due to the Streaming
        Potential in a Finite-Length Nanochannel: The Zero-
        Current Model ......................................... 122
4  Electrophoretic Transport and Separation ................... 128
   4.1  Uniform Charge Electrophoresis: Classical Theory ...... 128
   4.2  Combined Electrophoresis and Electro-Osmotic
        Convection ............................................ 131
   4.3  Electroviscous Effects ................................ 132
   4.4  Cellular Electrophoresis Involving a Conducting
        Layer of Charges ...................................... 133
   4.5  Electrophoresis with Surface Charge Migration and
        Counterion Condensation Effects ....................... 137
   4.6  Other Conductive Electrophoresis Theories -
        Conducting Stern Layer and Convective Current
        Effects ............................................... 139
   4.7  A General Electrophoresis Theory in the Debye-Huckel
        Limit ................................................. 141
   4.8  Capillary Electrophoresis: Applications ............... 143
        4.8.1  Capillary Zone Electrophoresis ................. 146
        4.8.2  Capillary Gel Electrophoresis .................. 147
        4.8.3  Micellar Electrokinetic Chromatography ......... 148
        4.8.4  Capillary Isotachophoresis ..................... 149
        4.8.5  Capillary Isoelectric Focusing ................. 149
        4.8.6  Capillary Electrochromatography ................ 150
        4.8.7  End-Labeled Free-Solution Electrophoresis ...... 152
5  Field-Induced Dielectric Polarization ...................... 155
   5.1  Nonequilibrium Electrokinetics ........................ 155
   5.2  Dielectric Polarization ............................... 156
        5.2.1  Dielectric Materials and Dipole Formation ...... 156
        5.2.2  Polarization Mechanisms ........................ 160
        5.2.3  Impedance Characterization of Relaxation
               Times .......................................... 161
   5.3  Interfacial Polarization .............................. 168
        5.3.1  Interfacial Polarizability - The Clausius-
               Mossotti Factor ................................ 168
        5.3.2  Dielectric Dispersion .......................... 177
        5.3.3  Bacterial Growth Detection Through Reactance
               Measurements ................................... 180
6  DC Nonlinear Electrokinetics Due to Field-Induced Double
   Layer Polarization ......................................... 184
   6.1  DC Nonlinear Electrokinetics .......................... 184
   6.2  Electrokinetic Flow Manipulation Using Field
        (Capacitance) Effects ................................. 185
   6.3  Concentration Polarization at Nearly Insulated
        Wedges ................................................ 188
   6.4  Electrokinetic Phenomenon of the Second Kind .......... 200
   6.5  Extended Polarized Layer: Current-Voltage
        Relationship .......................................... 208
   6.6  Dukhin's Model and Tangential Convection Effects ...... 215
        6.6.1  Low Peclet Numbers - The Dukhin Theory ......... 215
        6.6.2  High Peclet Numbers - Tangential Convection
               Enhancement of the Normal Flux ................. 217
   6.7  Electrokinetic Vortex Generation for Micromixing ...... 221
   6.8  Dynamic Superconcentration at Critical-Point Double
        Layer Gates ........................................... 225
   6.9  Vortex Instability of Extended Polarized Layers and
        Selection of Overlimiting Currents .................... 233
   6.10 Nonlinear Current-Voltage Characteristics of
        Nanopores ............................................. 239
7  AC Nonlinear Electro-Osmosis Due to Field-Induced Double
   Layer Polarization ......................................... 251
   7.1  AC Nonlinear Electrokinetics .......................... 251
   7.2  Derivation of the AC Electro-Osmotic Slip Velocity .... 257
        7.2.1  Double Layer Electrostatic Model ............... 258
        7.2.2  Hydrodynamic Model ............................. 261
        7.2.3  Bulk Potential ................................. 263
        7.2.4  Flow Reversal .................................. 263
   7.3  Planar Converging Stagnation Flow on Symmetric
        Coplanar Electrodes ................................... 268
   7.4  Normal Double Layer Charging of Passive Metal
        Surfaces .............................................. 276
   7.5  Electrothermal AC Electro-Osmosis ..................... 280
8  Dielectrophoresis and Electrorotation - Double Layer
   Effects .................................................... 284
   8.1  Ponderomotive Forces .................................. 284
   8.2  Dielectrophoresis ..................................... 285
        8.2.1  Classical Maxwell-Wagner Theory ................ 286
        8.2.2  Low-Conductivity Limit (α << λD)- Conducting
               Stern and Diffuse Layer Correction ............. 288
        8.2.3  Normal Capacitive Charging ..................... 295
        8.2.4  Intermediate Conductivity Limit (α ~ λD) -
               Normal Charging and Tangential Conduction in
               Thick Double Layers ............................ 300
        8.2.5  High-Conductivity Limit (α >> λD) - Double
               Layer Polarization with Polar Charging and
               Tangential Conduction .......................... 305
   8.3  Dielectrophoretic Discrimination of Red Blood Cell
        Age by Buffer Selection and Membrane Crosslinking ..... 311
        8.3.1  Single-Shell Maxwell-Wagner Model for Blood
               Cells .......................................... 313
        8.3.2  Optimal Buffer Composition and Membrane
               Crosslinking Agent ............................. 315
        8.3.3  Dielectrophoretic Measurements of Aged Red
               Blood Cells .................................... 317
   8.4  Molecular and Genetic Bead Dielectrophoresis .......... 321
   8.5  Electrorotation ....................................... 327
   8.6  Integrated Dielectrophoretic Chip for Bioparticle
        Sorting and Detection ................................. 329
   8.7  Integrated Traveling-Wave Dielectrophoretic Chip ...... 332
   8.8  AC Electro-Osmosis Enhanced Dielectrophoretic
        Trapping .............................................. 334
   8.9  Dynamic Particle Aggregation and Band Formation in
        AC Electro-Osmotic Vortex Flows ....................... 336
   8.10 AC Field-Enhanced Protein Crystallization ............. 338
9  Electrohydrodynamic Atomization, Electrospinning, and
   Discharge-Driven Vortices .................................. 344
   9.1  Interfacial Electrokinetics ........................... 344
   9.2  DC Electrospraying .................................... 345
        9.2.1  Mechanism and Spray Modes ...................... 345
        9.2.2  Conical Solutions Due to Induced Dielectric
               Polarization ................................... 351
        9.2.3  Bulk Space Charge, Ionic Wind, and
               Hydrodynamic Effects ........................... 354
        9.2.4  Effects of the Jet Dynamics on Current and
               Drop Diameter .................................. 356
   9.3  AC Cones and Electrosprays ............................ 360
        9.3.1  AC Electrospraying ............................. 360
        9.3.2  AC Cones: Net Entrainment of Liquid Space
               Charge ......................................... 374
   9.4  DC Electrospinning .................................... 380
   9.5  AC Electrospinning .................................... 386
   9.6  Discharge-Driven Vortices ............................. 394
   9.7  Colloid Deposition and DC Taylor Cone Harmonics ....... 402
10 Electrokinetically Driven Bubble and Drop Transport ........ 407
   10.1 Microfluidic Drop and Bubble Transport ................ 407
   10.2 Electrocapillarity and Electrowetting ................. 408
   10.3 Static Electrowetting ................................. 411
        10.3.1 Threshold Electrowetting Voltage and Local
               Contact Angle Hysteresis ....................... 412
        10.3.2 Contact Line Saturation and Dielectric
               Breakdown ...................................... 414
        10.3.3 Theoretical Analysis of Static
               Electrowetting ................................. 417
        10.3.4 Drop Velocities ................................ 421
   10.4  Spontaneous Electrowetting ........................... 423
        10.4.1 Parallel Line Electrodes ....................... 423
        10.4.2 Parallel Plate Electrodes ...................... 432
   10.5 Electrokinetic Bubble Transport: Equilibrium Double
        Layer Effects ......................................... 438
   10.6 AC Electrowetting on Electrodes: Dynamic Double
        Layer Effects ......................................... 441

APPENDIX A: Units, Notation, and Physical Constants ........... 449
APPENDIX B: List of Symbols ................................... 451

Bibliography .................................................. 459
Index ......................................................... 475
Color plates follow page ...................................... 222


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:23:08 2019. Размер: 17,803 bytes.
Посещение N 1854 c 14.02.2012