List of definitions and notations .............................. ix
Preface ........................................................ xv
Prerequisites from Volumes 1 and 2 ........................... xvii
§93 Nonabelian 2-groups all of whose minimal nonabelian
subgroups are metacyclic and have exponent 4 ............... 1
§94 Nonabelian 2-groups all of whose minimal nonabelian
subgroups are non-metacyclic and have exponent 4 ........... 8
§95 Nonabelian 2-groups of exponent 2e which have no minimal
nonabelian subgroups of exponent 2e ....................... 10
§96 Groups with at most two conjugate classes of nonnormal
subgroups ................................................. 12
§97 p-groups in which some subgroups are generated by
elements of order p ....................................... 24
§98 Nonabelian 2-groups all of whose minimal nonabelian
subgroups are isomorphic to M2n+1, n ≥ 3 fixed ............ 31
§99 2-groups with sectional rank at most 4 .................... 34
§100 2-groups with exactly one maximal subgroup which is
neither abelian norminimal nonabelian ..................... 46
§101 p-groups G with p > 2 and d(G) = 2 having exactly one
maximal sub-group which is neither abelian nor minimal
nonabelian ................................................ 66
§102 p-groups G with p > 2 and d(G) > 2 having exactly one
maximal sub-group which is neither abelian nor minimal
nonabelian ................................................ 77
§103 Some results of Jonah and Konvisser ....................... 93
§104 Degrees of irreducible characters of p-groups associated
with finite algebras ...................................... 97
§105 On some special p-groups ................................. 102
§106 On maximal subgroups of two-generator 2-groups ........... 110
§107 Ranks of maximal subgroups of nonmetacyclic two-
generator 2-groups ....................................... 113
§108 p-groups with few conjugate classes of minimal
nonabelian subgroups ..................................... 120
§109 On p-groups with metacyclic maximal subgroup without
cyclic subgroup of index p ............................... 122
§110 Equilibrated p-groups .................................... 125
§111 Characterization of abelian and minimal nonabelian
groups ................................................... 134
§112 Non-Dedekindian p-groups all of whose nonnormal
subgroups have the same order ............................ 140
§113 The class of 2-groups in §70 is not bounded .............. 148
§114 Further counting theorems ................................ 152
§115 Finite p-groups all of whose maximal subgroups except
one are extraspecial ..................................... 157
§116 Groups covered by few proper subgroups ................... 162
§117 2-groups all of whose nonnormal subgroups are either
cyclic or of maximal class ............................... 176
§118 Review of characterizations of p-groups with various
minimal nonabelian subgroups ............................. 179
§119 Review of characterizations of p-groups of maximal
class .................................................... 185
§120 Nonabelian 2-groups such that any two distinct minimal
nonabelian sub-groups have cyclic intersection ........... 192
§121 p-groups of breadth 2 .................................... 197
§122 p-groups all of whose subgroups have normalizers of
index at most p .......................................... 204
§123 Subgroups of finite groups generated by all elements in
two shortest conjugacy classes ........................... 237
§124 The number of subgroups of given order in a
metacyclic p-group ....................................... 239
§125 p-groups G containing a maximal subgroup H all of whose
subgroups are G -invariant ............................... 269
§126 The existence of p-groups G1 > G such that Aut(G1)
Aut(G) ................................................... 272
§127 On 2-groups containing a maximal elementary abelian
subgroup of order 4 ...................................... 275
§128 The commutator subgroup of p-groups with the subgroup
breadth 1 ................................................ 277
§129 On two-generator 2-groups with exactly one maximal
subgroup which is not two-generator ...................... 285
§130 Soft subgroups of p-groups ............................... 287
§131 p-groups with a 2-uniserial subgroup of order p .......... 292
§132 On centralizers of elements in p-groups .................. 295
§133 Class and breadth of a p-group ........................... 300
§134 On p-groups with maximal elementary abelian subgroup of
order p2 ................................................. 304
§135 Finite p-groups generated by certain minimal nonabelian
subgroups ................................................ 315
§136 p-groups in which certain proper nonabelian subgroups
are two-generator ........................................ 328
§137 p-groups all of whose proper subgroups have its derived
subgroup of order at most p .............................. 338
§138 p-groups all of whose nonnormal subgroups have the
smallest possible nor-malizer ............................ 343
§139 p-groups with a noncyclic commutator group all of
whose proper subgroups have a cyclic commutator group .... 355
§140 Power automorphisms and the norm of a p-group ............ 363
§141 Nonabelian p-groups having exactly one maximal subgroup
with a non-cyclic center ................................. 368
§142 Nonabelian p-groups all of whose nonabelian maximal
subgroups are either metacyclic or minimal nonabelian .... 370
§143 Alternate proof of the Reinhold Baer theorem on
2-groups with nonabelian norm ............................ 373
§144 p-groups with small normal closures of all cyclic
subgroups ................................................ 376
A.27 Wreathed 2-groups ........................................ 384
A.28 Nilpotent subgroups ...................................... 393
A.29 Intersections of subgroups ............................... 405
A.30 Thompson's lemmas ........................................ 416
A.31 Nilpotent p'-subgroups of class 2 in GL(n, p) ............ 428
A.32 On abelian subgroups of given exponent and small index ... 434
A.33 On Hadamard 2-groups ..................................... 437
A.34 Isaacs-Passman's theorem on character degrees ............ 440
A.35 Groups of Frattini class 2 ............................... 446
A.36 Hurwitz' theorem on the composition of quadratic forms ... 449
A.37 On generalized Dedekindian groups ........................ 452
A.38 Some results of Blackburn and Macdonald .................. 457
A.39 Some consequences of Frobenius' normal p-complement
theorem .................................................. 460
A.40 Varia .................................................... 472
A.41 Nonabelian 2-groups all of whose minimal nonabelian
subgroups have cyclic centralizers ....................... 514
A.42 On lattice isomorphisms of p-groups of maximal class ..... 516
A.43 Alternate proofs of two classical theorems on solvable
groups and some related results .......................... 519
A.44 Some of Freiman's results on finite subsets of groups
with small doubling ...................................... 527
Research problems and themes III .............................. 536
Author index .................................................. 630
Subject index ................................................. 632
|