List of Contributors ...................................... XIII
List of Symbols ........................................... XVII
Introduction .............................................. XXIX
1 Introduction to Aerosols ..................................... 1
Alexey A. Lushnikov
1.1 Introduction ............................................ 1
1.2 Aerosol Phenomenology ................................... 2
1.2.1 Basic Dimensionless Criteria ..................... 2
1.3 Drag Force and Diffusivity .............................. 6
1.4 Diffusion Charging of Aerosol Particles ................. 7
1.4.1 Flux Matching Exactly ............................ 8
1.4.2 Flux Matching Approximately ...................... 9
1.4.3 Charging of a Neutral Particle ................... 9
1.4.4 Recombination ................................... 10
1.5 Fractal Aggregates ..................................... 11
1.5.1 Introduction .................................... 12
1.5.2 Phenomenology of Fractals ....................... 13
1.5.4 Formation of Fractal Aggregates ................. 16
1.5.5 Optics of Fractals .............................. 18
1.5.6 Are Atmospheric Fractals Long-Lived? ............ 20
1.5.7 Concluding Remarks .............................. 21
1.6 Coagulation ............................................ 21
1.6.1 Asymptotic Distributions in Coagulating
Systems ......................................... 23
1.6.2 Gelation in Coagulating Systems ................. 26
1.7 Laser-Induced Aerosols ................................. 33
1.7.1 Formation of Plasma Cloud ....................... 33
1.7.2 Laser-Induced Gelation .......................... 34
1.8 Conclusion ............................................. 36
References .................................................. 37
Part I Aerosol Formation ...................................... 43
2 High-Temperature Aerosol Systems ............................ 45
Arkadi Maisels
2.1 Introduction ........................................... 45
2.2 Main High-Temperature Processes for Aerosol
Formation .............................................. 45
2.2.1 Flame Processes ................................. 47
2.2.2 Hot-Wall Processes .............................. 49
2.2.3 Plasma Processes ................................ 49
2.2.4 Laser-Induced Processes ......................... 50
2.2.5 Gas Dynamically Induced Particle Formation ...... 50
2.3 Basic Dynamic Processes in High-Temperature Aerosol
Systems ................................................ 50
2.3.1 Nucleation ...................................... 52
2.3.2 Coagulation/Aggregation ......................... 52
2.3.3 Surface Growth Due to Condensation .............. 55
2.3.4 Sintering ....................................... 55
2.3.5 Charging ........................................ 57
2.4 Particle Tailoring in High-Temperature Processes ....... 59
References .................................................. 61
3 Aerosol Synthesis of Single-Walled Carbon Nanotubes ......... 65
Albert G. Nasibulin and Sergey D. Shandakov
3.1 Introduction ........................................... 65
3.1.1 Carbon Nanotubes as Unique Aerosol Particles .... 65
3.1.2 History and Perspectives of CNT Synthesis ....... 68
3.2 Aerosol-Unsupported Chemical Vapor Deposition
Methods ................................................ 70
3.2.1 The HiPco Process ............................... 70
3.2.2 Ferrocene-Based Method .......................... 71
3.2.3 Hot-Wire Generator .............................. 73
3.3 Control and Optimization of Aerosol Synthesis .......... 74
3.3.1 On-Line Monitoring of CNT Synthesis ............. 74
3.3.2 Individual CNTs and Bundle Separation ........... 76
3.3.3 CNT Property Control and Nanobud Production ..... 76
3.4 Carbon Nanotube Bundling and Growth Mechanisms ......... 78
3.4.1 Bundle Charging ................................. 78
3.4.2 Growth Mechanism ................................ 80
3.5 Integration of the Carbon Nanotubes .................... 82
3.6 Summary ................................................ 84
Acknowledgements ............................................ 84
References .................................................. 84
4 Condensation, Evaporation, Nucleation ....................... 91
Alexey A. Lushnikov
4.1 Introduction ........................................... 91
4.2 Condensation ........................................... 92
4.2.1 Continuum Transport ............................. 93
4.2.2 Free-Molecule Transport ......................... 93
4.3 Condensation in the Transition Regime .................. 94
4.3.1 Flux-Matching Theory ............................ 95
4.3.2 Approximations .................................. 96
4.3.3 More Sophisticated Approaches ................... 97
4.4 Evaporation ............................................ 97
4.5 Uptake ................................................. 99
4.5.1 Getting Started ................................ 100
4.5.2 Hierarchy of Times ............................. 101
4.5.3 Diffusion in the Gas Phase ..................... 101
4.5.4 Crossing the Interface ......................... 103
4.5.5 Transport and Reaction in the Liquid Phase ..... 103
4.6 Balancing Fluxes ...................................... 104
4.6.1 No Chemical Interaction ........................ 104
4.6.2 Second-Order Kinetics .......................... 106
4.7 Nucleation ............................................ 108
4.7.1 The Szilard-Farkas Scheme ...................... 109
4.7.2 Condensation and Evaporation Rates ............. 110
4.7.3 Thermodynamically Controlled Nucleation ........ 111
4.7.4 Kinetically Controlled Nucleation .............. 111
4.7.5 Fluctuation-Controlled Nucleation .............. 113
4.8 Nucleation-Controlled Processes ....................... 114
4.8.1 Nucleation Bursts .............................. 114
4.8.2 Nucleation-Controlled Condensation ............. 115
4.8.3 Nucleation-Controlled Growth by Coagulation .... 117
4.8.4 Nucleation Bursts in the Atmosphere ............ 119
4.9 Conclusion ............................................ 120
References ................................................. 122
5 Combustion-Derived Carbonaceous Aerosols (Soot) in the
Atmosphere: Water Interaction and Climate Effects .......... 127
Olga B. Popovicheva
5.1 Black Carbon Aerosols in the Atmosphere: Emissions
and Climate Effects ................................... 127
5.2 Physico-Chemical Properties of Black Carbon
Aerosols .............................................. 132
5.2.1 General Characteristics ........................ 133
5.2.2 Key Properties Responsible for Interaction
with Water ..................................... 137
5.3 Water Uptake by Black Carbons ......................... 140
5.3.1 Fundamentals of Water Interaction with Black
Carbons ........................................ 140
5.3.2 Concept of Quantification ...................... 143
5.3.3 Laboratory Approach for Water Uptake
Measurements ................................... 144
5.3.4 Quantification of Water Uptake ................. 146
5.4 Conclusions ........................................... 152
Acknowledgements ........................................... 153
References ................................................. 153
6 Radioactive Aerosols - Chernobyl Nuclear Power Plant Case
Study ...................................................... 159
Boris I. Ogorodnikov
6.1 Introduction .......................................... 159
6.2 Environmental Aerosols ................................ 164
6.2.1 Dynamics of Release of Radioactive Aerosols
from Chernobyl ................................. 164
6.2.2 Transport of Radioactive Clouds in the
Northern Hemisphere ............................ 166
6.2.3 Observation of Radioactive Aerosols above
Chernobyl ...................................... 168
6.2.4 Observations of Radioactive Aerosols in the
Territory around Chernobyl ..................... 171
6.2.5 Dispersity of Aerosol Carriers of
Radionuclides .................................. 183
6.3 Aerosols inside the Vicinity of the "Shelter"
Building .............................................. 185
6.3.1 Devices and Methods to Control Radioactive
Aerosols in the "Shelter" ...................... 185
6.3.2 Control of Discharge from the "Shelter" ........ 185
6.3.3 Weil-Boring in Search of Remaining Nuclear
Fuel ........................................... 186
6.3.4 Clearance of the Turbine Island of the Fourth
Power Generating Unit .......................... 188
6.3.5 Strengthening of the Seats of Beams on the
Roof of the "Shelter" .......................... 189
6.3.6 Aerosols Generated during Fires in the
"Shelter" ...................................... 191
6.3.7 Dust Control System ............................ 192
6.3.8 Control of the Release of Radioactive
Aerosols through the "Bypass" System ........... 192
6.3.9 Radon, Thoron and their Daughter Products in
the "Shelter" .................................. 195
References ................................................. 197
Part II Aerosol Measurement and Characterization .............. 203
7 Applications of Optical Methods for Micrometer and
Submicrometer Particle Measurements ........................ 205
Aladár Czitrovszky
7.1 Introduction .......................................... 205
7.2 Optical Methods in Particle Measurements .............. 206
7.3 Short Overview of Light Scattering Theories ........... 208
7.4 Classification of Optical Instruments for Particle
Measurements .......................................... 213
7.4.1 Multi-Particle Instruments ..................... 213
7.4.2 Single-Particle Instruments .................... 214
7.5 Development of Airborne and Liquid-borne Particle
Counters and Sizers ................................... 215
7.5.1 Development of Airborne Particle Counters ...... 216
7.5.2 Development of Liquid-borne Particle
Counters ....................................... 222
7.6 New Methods Used to Characterize the Electrical
Charge and Density of the Particles ................... 225
7.7 Aerosol Analyzers for Measurement of the Complex
Refractive Index of Aerosol Particles ................. 227
7.8 Comparison of Commercially Available Instruments and
Analysis of the Trends of Further Developments ........ 229
7.8.1 Portable Particle Counters ..................... 230
7.8.2 Remote Particle Counters ....................... 230
7.8.3 Multi-Particle Counters ........................ 233
7.8.4 Handheld Particle Counters ..................... 233
7.9 Conclusions ........................................... 233
References ................................................. 234
8 The Inverse Problem and Aerosol Measurements ............... 241
Valery A. Zagaynov
8.1 Introduction .......................................... 241
8.2 Forms of Representation of Particle Size
Distribution .......................................... 243
8.3 Differential and Integral Measurements ................ 245
8.4 Differential Mobility Analysis ........................ 246
8.5 Diffusion Aerosol Spectrometry ........................ 252
8.5.1 Raw Measurement Results and their Development
- Parameterization of Particle Size
Distribution ................................... 254
8.5.2 Fitting of Penetration Curves .................. 256
8.5.3 Transformation of the Integral Equation into
Nonlinear Algebraic Form ....................... 257
8.5.4 Effect of Experimental Errors on
Reconstruction of Particle Size Distribution ... 259
8.5.5 Reconstruction of Bimodal Distributions ........ 261
8.5.6 Mathematical Approach to Reconstruct Bimodal
Distribution from Particle Penetration Data .... 264
8.5.7 Solution of the Inverse Problem by
Regularization Method .......................... 266
8.6 Conclusions ........................................... 268
References ................................................. 269
Part III Aerosol Removal ...................................... 273
9 History of Development and Present State of Polymeric
Fine-Fiber Unwoven Petryanov Filter Materials for Aerosol
Entrapment ................................................. 275
Bogdan F. Sadovsky
References ................................................. 282
10 Deposition of Aerosol Nanoparticles in Model Fibrous
Filters .................................................... 283
Vasily A. Kirsch and Alexander A. Kirsch
10.1 Introduction .......................................... 283
10.2 Results of Numerical Modeling of Nanoparticle
Deposition in Two-Dimensional Model Filters ........... 287
10.2.1 Fiber Collection Efficiency at High Peclet
Number: Cell Model Approach .................... 287
10.2.2 Fiber Collection Efficiency at Low Peclet
Number: Row of Fibers Approach ................. 289
10.2.3 Deposition of Nanoparticles upon Ultra-Fine
Fibers ......................................... 292
10.2.4 Deposition of Nanoparticles on Fibers with
Non-Circular Cross-Section ..................... 294
10.2.5 Deposition of Nanoparticles on Porous and
Composite Fibers ............................... 298
10.3 Penetration of Nanoparticles through Wire Screen
Diffusion Batteries ................................... 302
10.3.1 Deposition of Nanoparticles in Three-
Dimensional Model Filters ...................... 302
10.3.2 Theory of Particle Deposition on Screens with
Square Mesh .................................... 304
10.3.3 Comparison with Experiment ..................... 305
10.4 Conclusion ............................................ 310
Acknowledgements ........................................... 311
References ................................................. 311
11 Filtration of Liquid and Solid Aerosols on Liquid-Coated
Filters .................................................... 315
Igor E. Agranovski
11.1 Introduction .......................................... 315
11.2 Wettable Filtration Materials ......................... 316
11.2.1 Theoretical Aspects ............................ 318
11.2.2 Practical Aspects .............................. 320
11.2.3 Inactivation of Bioaerosols on Fibers Coated
by a Disinfectant .............................. 326
11.3 Non-Wettable Filtration Materials ..................... 327
11.3.1 Theoretical Aspects ............................ 327
11.3.2 Practical Aspects of Non-Wettable Filter
Design ......................................... 330
11.4 Filtration on a Porous Medium Submerged into
a Liquid .............................................. 330
11.4.1 Theoretical Approach ........................... 330
11.4.2 Application of the Technique for Viable
Bioaerosol Monitoring .......................... 337
References ................................................. 340
Part IV Atmospheric and Biological Aerosols .................. 343
12 Atmospheric Aerosols ....................................... 345
Lev S. Ivlev
12.1 General Concepts ...................................... 345
12.2 Atmospheric Aerosols of Different Nature .............. 348
12.2.1 Soil Aerosols .................................. 348
12.2.2 Marine Aerosols ................................ 351
12.2.3 Volcanic Aerosols .............................. 354
12.2.4 Aerosols In situ - Secondary Aerosols .......... 358
12.2.5 Biogenic Small Gas Compounds and Aerosols ...... 360
12.3 Temporal and Dimensional Structure of Atmospheric
Aerosols .............................................. 363
12.3.1 Aerosols in the Troposphere .................... 363
12.4 Aerosols in the Stratosphere .......................... 371
References ................................................. 377
13 Biological Aerosols ........................................ 379
Sergey A. Grinshpun
13.1 Introduction .......................................... 379
13.2 History of Bioaerosol Research ........................ 379
13.3 Main Definitions and Types of Bioaerosol Particles .... 381
13.4 Sources of Biological Particles and their
Aerosolization ........................................ 383
13.5 Sampling and Collection ............................... 384
13.5.1 Impaction ...................................... 386
13.5.2 Collection into Liquid ......................... 388
13.5.3 Filter Collection .............................. 389
13.5.4 Gravitational Settling ......................... 390
13.5.5 Electrostatic Precipitation .................... 390
13.6 Analysis .............................................. 391
13.7 Real-Time Measurement of Bioaerosols .................. 393
13.8 Purification of Indoor Air Contaminated with
Bioaerosol Particles and Respiratory Protection ....... 393
13.8.1 Air Purification ............................... 393
13.8.2 Respiratory Protection ......................... 396
References ................................................. 398
14 Atmospheric Bioaerosols .................................... 407
Aleksandr S. Safatov, Galina A. Buryak, Irina
S. Andreeva, Sergei E. Olkin, Irina K. Reznikova,
Aleksandr N. Sergeev, Boris D. Belan and Mikhail
V. Panchenko
14.1 Introduction .......................................... 407
14.2 Methods of Atmospheric Bioaerosol Research ............ 408
14.2.1 Methods and Equipment for Atmospheric
Bioaerosol Sampling ............................ 409
14.2.2 Methods to Analyze the Chemical Composition
of Atmospheric Bioaerosols and their
Morphology ..................................... 411
14.2.3 Methods Used to Detect and Characterize
Microorganisms in Atmospheric Bioaerosols ...... 416
14.3 Atmospheric Bioaerosol Studies ........................ 421
14.3.1 Time Variation of Concentrations and
Composition of Atmospheric Bioaerosol
Components ..................................... 421
14.3.2 Spatial Variation of the Concentrations and
Composition of Atmospheric Bioaerosol
Components ..................................... 432
14.3.3 Possible Sources of Atmospheric Bioaerosols
and their Transfer in the Atmosphere ........... 436
14.3.4 The Use of Snow Cover Samples to Analyze
Atmospheric Bioaerosols ........................ 438
14.3.5 Potential Danger of Atmospheric Bioaerosols
for Humans and Animals ......................... 442
14.4 Conclusion ............................................ 446
References ................................................. 448
Index ...................................................... 455
|