Foreword ...................................................... iii
Editors' Preface .............................................. iii
Chapter 1
STRUCTURAL RELAXATION AND THE GLASS TRANSITION
С.Т. Moynihan
Introduction: The Nature of Structural Relaxation ............... 1
Phenomenology of Structural Relaxation .......................... 3
Isothermal relaxation ........................................ 3
Relaxation during cooling and heating ........................ 5
Dependence of Tg on cooling and heating rate ................. 8
Kinetics of Structural Relaxation .............................. 10
Isothermal relaxation ....................................... 10
Relaxation during cooling and heating ....................... 12
Correlations between Structural Relaxation and Shear
Viscosity ...................................................... 14
Conclusions .................................................... 17
References ..................................................... 18
Chapter 2
RELAXATION IN SILICATE MELTS: SOME APPLICATIONS
D.B. Dingwell
Introduction ................................................... 21
Fundamentals ................................................... 21
Phenomenology and significance of the glass transition ...... 21
Experimental timescales and relaxation times ................ 25
Volume versus enthalpy relaxation ........................... 27
Volume versus shear relaxation .............................. 28
Secondary relaxations ....................................... 34
Applications ................................................... 35
Relaxation geospeedometry ................................... 35
Equations of state: liquid expansivity and volume ........... 39
Relaxation and rheology ..................................... 47
Dissipation and failure .................................. 50
Flow birefringence ....................................... 51
Isostructural viscosity .................................. 51
Relaxation of fluid inclusions in melts ..................... 53
Determination of To of fluid-saturated melts ............. 53
Viscosity and fragility of hydrous melts ................. 55
Expansivity of hydrous melts ............................. 56
Water speciation ......................................... 57
Relaxation timescales of hydrous species .................... 60
Outlook ........................................................ 62
Acknowledgments ................................................ 62
References ..................................................... 63
Chapter 3
RHEOLOGY AND CONFIGURATIONAL ENTROPY OF SILICATE MELTS
P. Richet & Y. Bottinga
Introduction ................................................... 67
Viscosity and Relaxation Times ................................. 69
Shear viscosity ............................................. 69
Maxwell model ............................................... 70
Volume viscosity ............................................ 71
Elongational viscosity ...................................... 72
Configurational Entropy ........................................ 72
Glass transition ............................................ 72
Configurational heat capacity ............................... 73
Calorimetric determination of the configurational entropy ... 75
Viscosity and Configurational Entropy .......................... 76
Adams-Gibbs theory .......................................... 76
Temperature dependence of the viscosity ..................... 77
Viscosity and structural relaxation ......................... 79
Composition dependence of the viscosity ..................... 81
Pressure dependence of the viscosity ........................ 82
Density fluctuations ........................................ 84
Newtonian vs. non-Newtonian viscosity ....................... 86
Epilogue ....................................................... 88
Acknowledgments ................................................ 89
References ..................................................... 89
Chapter 4
VISCOELASTICITY
S.L. Webb and D.B. Dingwell
Introduction ................................................... 95
Viscoelasticity ............................................... 102
Time- versus frequency-domain measurements ................. 103
Shear Rheology ................................................ 103
Forced torsion ............................................. 103
Thermorheological simplicity ............................... 104
Ultrasonics ................................................ 108
Shear viscosity ............................................ 1ll
Volume Rheology ............................................... 111
Anelasticity .................................................. 112
Relaxed Compressibility of Silicate Melts ..................... 114
Elasticity systematics ..................................... 114
Iso-structural melts ....................................... 114
Outlook ....................................................... 116
References .................................................... 117
Chapter 5
ENERGETICS OF SILICATE MELTS
A. Navrotsky
Why Study Energetics? ......................................... 121
Methods of Studying Energetics ................................ 121
Factors Affecting Melt Energetics ............................. 124
Major acid-base interactions and polymerization
equilibria ................................................. 124
Interactions in geologically relevant silicate melts ....... 126
Charge coupled substitutions ............................ 127
Speciation, clustering, and phase separation ............ 128
Mixed alkali and mixed cation effects ................... 129
Applications to Melts of Geologic Composition ................. 129
Heat capacities and heats of fusion ........................ 129
Heats of mixing of major components ........................ 133
Application of the two-lattice model to entropies of
mixing in silicate melts ................................... 134
Energetics of minor components-particularly Т1О2 ........... 135
Conclusions ................................................... 139
Acknowledgments ............................................... 140
References .................................................... 140
Chapter 6
Thermodynamic Mixing Properties and The Structure
of Silicate Melts
P.C. Hess
Introduction .................................................. 145
Crystal Chemistry of Simple Silicates ......................... 147
Enthalpies of Formation of Simple Silicates ................... 149
Enthalpic Electronegativities ................................. 154
Enthalpy of Simple "Mineral" Melts ............................ 156
Analysis of Phase Diagrams .................................... 160
Cristobalite-tridymite liquidi ............................. 160
Cotectics and the activities of melt species ............... 161
Analysis of cotectic shifts-concept of neutral species ..... 163
Aluminosilicate systems .................................... 166
Rutile saturation surface .................................. 168
Other network-forming species .............................. 172
Critical Melts ................................................ 172
Redox Equilibria .............................................. 176
Discussion .................................................... 178
Acknowledgments ............................................... 180
Appendix ...................................................... 180
Free energy of mixing ...................................... 180
Entropy of mixing .......................................... 185
References .................................................... 187
Chapter 7
Dynamics and Structure of Silicate and Oxide Melts:
Nuclear Magnetic Resonance Studies
J.F. Stebbins
Introduction .................................................. 191
Other sources of background information on NMR ............. 192
Basic NMR Concepts ............................................ 193
Quadrupolar nuclides ....................................... 195
Dipole-dipole interactions ................................. 196
Motional averaging ......................................... 197
MAS, DOR, DAS: high resolution spectroscopy of solids ...... 199
Chemical exchange .......................................... 200
Two-dimensional exchange experiments ....................... 201
Structural effects on chemical shifts ...................... 202
Spin-lattice relaxation .................................... 205
Experimental Approaches to NMR of Oxide Melts ................. 208
Application of NMR to Glass Structure ......................... 210
Silicon sites in glasses: Q species and thermodynamic
models ..................................................... 210
Five- and six-coordinated silicon ....................... 213
Oxygen sites ............................................... 214
Aluminum coordination ...................................... 214
Alkali and alkaline earth cations .......................... 216
Boron coordination ......................................... 216
Phosphorous in phosphate glasses ........................... 216
Fictive temperature studies: the effect of temperature on
melt structure ............................................. 217
Speciation in silicate glasses .......................... 217
Aluminum coordination: changes with Tf .................. 218
Boron coordination: changes with Tf ..................... 218
The extent of ordering in silicate glasses ................. 219
Intermediate range order ................................ 220
Orientational disorder .................................. 221
Applications of NMR to Oxide Melts ............................ 221
Chemical exchange in melts: silicate species and viscous
flow ....................................................... 221
Chemical exchange in melts: oxygen, boron and phosphate
species .................................................... 223
Spin-lattice relaxation and dynamics in melts .............. 229
Silicon ................................................. 229
Aluminum peak widths, relaxation and dynamics ........... 230
Alkali and alkaline earth cation diffusion .............. 231
Boron in borate melts ................................... 232
Average local structure in melts ........................... 232
Effects of temperature and melting on structure ......... 233
Compositional effects on melt structure ................. 236
Conclusions ................................................... 238
Acknowledgments ............................................... 239
References .................................................... 239
Chapter 8
Vibrational Spectroscopy of Silicate Liquids
P.F. McMillan & G.H. Wolf
Introduction .................................................. 247
"Liquids" versus "glasses" ................................. 249
NMR "versus" vibrational spectroscopy ...................... 253
Theoretical Background ........................................ 255
Interaction with light: selection rules .................... 255
Frequency shifts with temperature .......................... 259
Infrared and Raman intensities ............................. 260
Linewidths and lineshapes .................................. 263
Experimental Vibrational Spectroscopy at High Temperatures .... 266
Infrared reflection and emission studies ...................... 266
Raman scattering .............................................. 268
Vibrational Studies of Aluminosilicate Liquids and Glasses .... 273
SiO2 ....................................................... 273
Alkali and alkaline earth silicates ........................ 283
Aluminosilicates along the "charge-balanced" SiO2-MAlO2
or SiO2-MAl2O4 joins ....................................... 294
Haplobasaltic and other aluminosilicate compositions ....... 305
Other components ........................................... 306
Conclusion .................................................... 306
Acknowledgments ............................................... 307
References .................................................... 308
Chapter 9
X-RAY SCATTERING AND X-RAY SPECTROSCOPY STUDIES OF
SILICATE MELTS
G.E. Brown, Jr., F. Farges & G. Calas
Introduction .................................................. 317
Historical Perspectives ....................................... 319
The crystallite and random-network models .................. 319
Modern studies of glass/melt structure ..................... 321
X-ray Scattering Studies of Silicate Glasses and Melts ........ 324
Scattered x-ray intensity and radial distribution
functions .................................................. 324
Quasi-crystalline models of glass/melt structure ........... 328
Radial distribution function of silica glass ............... 330
Radial distribution functions of framework
aluminosilicate glasses .................................... 333
Experimental approaches to high-temperature X-ray
scattering studies of silicate melts ....................... 337
X-ray scattering results for silicate melts ................ 339
SiO2 and Al2O3 melts .................................... 339
Alkali silicate melts ................................... 340
Alkaline-earth-silicate melts ........................... 343
Iron-silicate melts ..................................... 345
Feldspar-composition melts .............................. 347
X-ray Absorption Spectroscopy ................................. 348
Basic principles ........................................... 348
Pre-edge region ......................................... 350
XANES region ............................................ 351
EXAFS region ............................................ 352
The harmonic approximation .............................. 353
Anharmonicity ........................................... 354
Effective pair-potential method ......................... 354
Cumulant expansion method ............................... 356
Farges-Brown empirical model ............................ 357
Relationship of anharmonicity to bond thermal
expansion coefficients .................................. 358
Relationship of anharmonicity to Pauling bond valence ... 358
Prediction of anharmonicity in crystals and melts .......... 359
Model-independent measure of the effective pair-
potentials and their g(R) functions ........................ 359
High-temperature XAS experimental methods .................. 361
Transmission mode ....................................... 361
Fluorescence mode ....................................... 363
High-temperature XAS results for cations in silicate
melts ...................................................... 364
Highly charged cations ..................................... 364
Titanium (IV) ........................................... 364
Germanium (IV) .......................................... 368
Zirconium (IV) .......................................... 369
Molybdenum (VI) ......................................... 370
Thorium (IV) ............................................ 371
Uranium (VI) ............................................ 371
Divalent cations ........................................... 372
Iron (II) ............................................... 372
Nickel (II) ............................................. 375
Zinc (II) ............................................... 376
Coordination chemistry of cations in silicate melts: an
XAFS perspective ........................................... 377
Network-former and modifier roles of cations in
silicate melts .......................................... 377
The coordination environment of Mg in silicate
glasses and melts ....................................... 378
Coordination changes above To ........................... 379
Implications of XAFS- derived coordination numbers
for Fe(II) and Ni(II) for cation partitioning between
silicate melts and crystals ............................. 379
Models of Medium-range Order in Silicate Glasses and Melts .... 382
Bond valence models of medium-range order in silicate
melts ...................................................... 382
Modified random network model and percolation domains
in silicate glasses and melts .............................. 385
Changes in medium-range order caused by nucleation in
silicate glasses and melts ................................. 387
Summary of Average М- О Distances and Cation Coordination
Numbers in Silicate Glasses and Melts ......................... 387
Conclusions and Future Prospects .............................. 398
Acknowledgments ............................................... 400
References .................................................... 401
Chapter 10
Diffusion in Silicate Melts
S. Chakraborty
Introduction .................................................. 411
Historical Background and Present Context ..................... 411
Scope of the Chapter and Some Conventions ..................... 413
Silicate Melts versus Aqueous Solutions ....................... 415
What is Diffusion? ............................................ 415
I. Diffusion of One Kind of Particle in a Melt ................ 416
Fick's first law and some of its consequences .............. 416
Fick's second law .......................................... 417
Reference frames and units ................................. 419
Limitations to Fick's law and non-Fickian diffusion ........ 421
Different kinds of diffusion coefficients- Self and
tracer diffusion coefficients .............................. 422
II. Diffusion of Two Components in a Melt ..................... 423
Chemical diffusion coefficients and diffusive coupling ..... 423
Some characteristics of chemical diffusion coefficients .... 424
Relationship between chemical and tracer diffusion
coefficients ............................................... 425
Thermodynamic factor ....................................... 426
Thermodynamic formulation of diffusion ..................... 427
III. Diffusion in a Multicomponent Melt ....................... 428
Fick-Onsager relations ..................................... 428
Some important characteristics of the L and D matrices ..... 429
Domain of validity of Fick-Onsager relation ................ 431
Models relating tracer to chemical diffusion coefficients
in multicomponent systems .................................. 432
Effective binary diffusion coefficients and
multicomponent D matrices .................................. 433
Diffusive coupling and uphill diffusion .................... 434
Diffusion paths ............................................ 437
IV. Relation between Diffusion and Other Properties ........... 439
Diffusion, relaxation and glass transition ................. 439
The glass transition and some related concepts .......... 439
Glass transition and measurement of diffusion
coefficients ............................................ 441
Effect of glass transition on diffusion data ............ 443
Unified model for ionic transport above and below
the glass transition temperature ........................ 444
Diffusion and melt structure ............................... 446
Relation between structure and diffusion in a glass ........... 447
Anderson and Stuart (1954) model .............................. 448
Weak electrolyte model ........................................ 448
Modified random-network (MRN) transport model ................. 448
Jump relaxation model ......................................... 448
Site mismatch model ........................................... 449
Relation between structure and diffusion in a liquid .......... 451
Diffusion and electrical properties ........................ 453
Diffusion and viscosity .................................... 455
Diffusion and thermodynamic mixing ......................... 457
Use of exact relationships .............................. 457
Dilute constituents in multicomponent systems ........ 457
Major components in multicomponent systems ........... 457
Use of empirical observations ........................... 458
Models based on continuous partitioning of
elements ............................................. 458
Zero flux planes (ZFP) ............................... 459
Relation of diffusion to spectroscopic data ................ 459
V. Empirical Methods .......................................... 460
Methods to predict elemental diffusion rates ............... 460
Size-charge correlations ................................ 460
Compensation law ........................................ 461
Methods to predict chemical diffusion rates ................ 462
Transient two-liquid partitioning ....................... 462
Compensation law ........................................ 463
Methods to predict chemical diffusion rates ................ 464
Transient two-liquid partitioning ....................... 464
Modified effective binary model ......................... 465
VI. Experimental Methods ...................................... 465
Macroscopic measurements ................................... 466
Problems of handling melts and differences between
experiments on "granites" vs. "basalts" ................. 466
The diffusion anneal .................................... 467
After the anneal-measurement of concentration
profiles ................................................ 468
Fitting a model to measured profiles-tracer and
binary diffusion, constant diffusion coefficients ....... 469
Fitting a model to measured profiles: chemical
diffusion, non-constant diffusion coefficients .......... 470
Fitting a model to measured profiles-multicomponent
diffusion ............................................... 472
Spectroscopic methods ...................................... 473
Nuclear spectroscopic techniques ........................ 474
Nuclear Magnetic Resonance (NMR) ..................... 474
Vibrational spectroscopic methods ....................... 476
Other methods .............................................. 476
Uncertainties in diffusion data ............................ 477
VII. Microscopic Aspects of Diffusion in Silicate Melts ....... 478
Random walk in amorphous medium ............................ 478
Correlation factors ........................................ 480
Relationship of L-matrix to microscopic motion ............. 481
Computer models-molecular dynamics, Monte Carlo, etc ....... 483
VIII. Diffusion Data in Silicate Melts ........................ 485
Effect of composition on diffusion ......................... 486
(1) Diffusion of alkali ions ............................ 486
(2) Diffusion of network modifiers other than
alkalies ............................................ 486
(3) Diffusion of network forming cations ................ 487
(4) Diffusion of anions ................................. 487
(5) Chemical diffusion coefficients ..................... 488
Temperature dependence of diffusion coefficients ........... 489
Pressure dependence of diffusion coefficients .............. 490
Pressure dependence for network formers ....................... 490
Pressure dependence for network modifiers ..................... 494
IX. Applications .............................................. 495
Acknowledgments ............................................... 496
References .................................................... 497
Chapter 11
PRESSURE EFFECTS ON SILICATE MELT STRUCTURE AND
PROPERTIES
G.H. Wolf & P.F. McMillan
Introduction .................................................. 505
General Highlights ............................................ 506
Physical Properties ........................................... 510
Structural Properties ......................................... 514
Fully polymerized systems .................................. 514
Silica .................................................. 514
Germania ................................................ 522
"Charge-balanced" aluminosilicates ...................... 525
Depolymerized silicate systems ............................. 528
Binary alkali silicates ................................. 529
Alkali aluminosilicate systems .......................... 541
Alkaline earth metasilicates ............................ 545
Alkaline earth orthosilicates ........................... 548
Acknowledgments ............................................... 552
References .................................................... 553
Chapter 12
Computer Simulations of Silicate Melts
P.H. Poole, P.F. McMillan & G.H. Wolf
Introduction .................................................. 563
Modelling and Measurement ..................................... 565
The basic problem .......................................... 566
The Monte Carlo method ..................................... 567
The molecular dynamics method .............................. 568
"The Devil is in the details..." ........................... 571
Initial conditions ...................................... 571
System size and periodic boundary conditions ............ 571
Constraints and ensembles ............................... 573
Interaction potentials ..................................... 575
General features ........................................ 575
Long-range interactions ................................. 578
Potentials for silica and silicates ..................... 579
Making "measurements" ...................................... 582
Static properties ....................................... 584
Dynamics ................................................ 586
Simulations of Silicate Liquids ............................... 589
Mostly SiO2 ................................................ 589
Structure ............................................... 589
Vibrational spectrum .................................... 590
Expanded silica ......................................... 591
Phase relations ......................................... 592
Diffusion coefficients and mechanism ....................... 593
Diffusion maximum in highly polymerized silicates at
high pressure .............................................. 594
Silicon coordination at high pressure ...................... 595
Other silicate melt studies ................................ 596
Overview ................................................ 596
Structure and properties of binary silicates ............ 598
Alkali ion mobility ..................................... 598
Diffusion of network-forming ions ....................... 599
Al and Si coordination in high temperature melts ........ 601
The effect of pressure on Si and Al coordination ........ 604
Mantle melts ............................................ 605
Conclusions ................................................... 606
Acknowledgments ............................................... 607
References .................................................... 607
|