Reviews in mineralogy and geochemistry; vol.42 (Washington, 2001). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаMolecular modeling theory: applications in the geosciences / ed. by R.T.Cygan, J.D.Kubick. - Washington: Mineralogical society of America, 2001. - xii, 531 p.: ill. - (Reviews in mineralogy and geochemistry; vol.42). - Bibliogr. at the end of the art. - ISBN 0-939950-54-5; ISSN 1529-6466
 

Оглавление / Contents
 
1  Molecular Modeling in Mineralogy and Geochemistry
   Randall T. Cygan

INTRODUCTION .................................................... 1
   Historical perspective ....................................... 2
   Molecular modeling tools ..................................... 3
POTENTIAL ENERGY ................................................ 6
   Energy terms ................................................. 7
   Atomic charges .............................................. 10
   Practical concerns .......................................... 11
MOLECULAR MODELING TECHNIQUES .................................. 11
   Conformational analysis ..................................... 11
   Energy minimization ......................................... 13
   Energy minimization and classical-based equilibrium
   structures .................................................. 14
   Quantum chemistry methods ................................... 15
   Energy minimization and quantum-based equilibrium
   structures .................................................. 18
   Monte Carlo methods ......................................... 20
   Molecular dynamics methods .................................. 23
   Quantum dynamics ............................................ 25
FORSTERITE: THE VERY MODEL OF A MODERN MAJOR MINERAL ........... 26
   Static calculations and energy minimization studies ......... 27
   Lattice dynamics studies .................................... 27
   Quantum studies ............................................. 27
THE FUTURE ..................................................... 28
ACKNOWLEDGMENTS ................................................ 28
GLOSSARY OF TERMS .............................................. 29
REFERENCES ..................................................... 30

2  Simulating the Crystal Structures and Properties of
   Ionic Materials From Interatomic Potentials
   Julian D. Gale

INTRODUCTION ................................................... 37
INTERATOMIC POTENTIAL MODELS FOR IONIC MATERIALS ............... 37
   Long-range interactions ..................................... 39
   Short-range interactions .................................... 40
   Energy minimization ......................................... 41
CRYSTAL PROPERTIES FROM STATIC CALCULATION ..................... 44
   Elastic constants ........................................... 44
   Dielectric constants ........................................ 44
   Piezoelectric constants ..................................... 45
   Phonons ..................................................... 45
DERIVATION OF POTENTIAL PARAMETERS ............................. 47
   Simultaneous fitting ........................................ 47
   Relaxed fitting ............................................. 49
SIMULATING THE EFFECT OF TEMPERATURE AND PRESSURE ON CRYSTAL
STRUCTURES ..................................................... 50
FUTURE DIRECTIONS IN INTERATOMIC POTENTIAL MODELLING OF IONIC
MATERIALS ...................................................... 56
   Structure solution and prediction ........................... 58
ACKNOWLEDGMENTS ................................................ 59
REFERENCES ..................................................... 59

3  Application of Lattice Dynamics and Molecular Dynamics
   Techniques to Minerals and Their Surfaces
   Steve C. Parker, Nora H. de Leeuw, Ekatarina Bourova,
   David J. Cooke

INTRODUCTION ................................................... 63
METHODOLOGY .................................................... 63
LATTICE DYNAMICS ............................................... 64
MOLECULAR DYNAMICS ............................................. 67
SIMULATION OF MINERAL-WATER INTERFACES ......................... 74
CONCLUSIONS .................................................... 80
REFERENCES ..................................................... 81

4  Molecular Simulations of Liquid and Supercritical Water:
   Thermodynamics, Structure, and Hydrogen Bonding
   Audrey G. Kalinichev

INTRODUCTION ................................................... 83
CLASSICAL METHODS OF MOLECULAR SIMULATIONS ..................... 86
   Molecular dynamics .......................................... 86
   Monte Carlo methods ......................................... 87
   Boundary conditions, long-range corrections, and
   statistical errors .......................................... 89
   Interaction potentials for aqueous simulations .............. 90
THERMODYNAMICS OF SUPERCRITICAL AQUEOUS SYSTEMS ................ 95
   Macroscopic thermodynamic properties of simulated
   supercritical water ......................................... 96
   Micro-thermodynamic properties .............................. 97
STRUCTURE OF SUPERCRITICAL WATER .............................. 101
HYDROGEN BONDING IN LIQUID AND SUPERCRITICAL WATER ............ 104
MOLECULAR CLUSTERIZATION IN SUPERCRITICAL WATER ............... 109
DYNAMICS OF MOLECULAR TRANSLATIONS, LIBRATIONS, AND
VIBRATIONS IN SUPERCRITICAL WATER ............................. 113
CONCLUSIONS AND OUTLOOK ....................................... 120
ACKNOWLEDGMENTS ............................................... 121
REFERENCES .................................................... 121

5  Molecular Dynamics Simulations of Silicate Glasses and Glass
   Surfaces
      Stephen H. Garofalini

INTRODUCTION .................................................. 131
MOLECULAR DYNAMICS COMPUTER SIMULATION TECHNIQUE .............. 131
   Interatomic potentials ..................................... 135
   Periodic boundary conditions ............................... 137
MD SIMULATIONS OF OXIDE GLASSES ............................... 140
   Bulk glasses ............................................... 140
   Bulk SiO2 .................................................. 141
   Multicomponent silicate glasses ............................ 145
MD SIMULATIONS OF OXIDE GLASS SURFACES ........................ 147
   SiO2 ....................................................... 147
   Multicomponent silicate surfaces ........................... 162
SUMMARY ....................................................... 162
ACKNOWLEDGMENTS ............................................... 164
REFERENCES .................................................... 164

6  Molecular Models of Surface Relaxation, Hydroxylation,
   and Surface Charging at Oxide-Water Interfaces
      James R. Rustad

INTRODUCTION .................................................. 169
SCOPE ......................................................... 170
THE STILLINGER-DAV1D WATER MODEL .............................. 172
IRON-WATER AND SILICON-WATER POTENTIALS AND THE BEHAVIOR
OF FE3+ AND SI4+ IN THE GAS PHASE AND IN AQUEOUS SOLUTION ..... 174
CRYSTAL STRUCTURES ............................................ 177
VACUUM-TERMINATED SURFACES .................................... 179
HYDRATED AND HYDROXYLATED SURFACES ............................ 183
   Neutral surfaces ........................................... 183
   Surface charging ........................................... 188
SOLVATED INTERFACES ........................................... 191
REMARKS ....................................................... 193
ACKNOWLEDGMENTS ............................................... 193
REFERENCES .................................................... 194

7  Structure and Reactivity of Semiconducting Mineral
   Surfaces: Convergence of Molecular Modeling and
   Experiment
   Kevin M. Rosso

INTRODUCTION .................................................. 199
BACKGROUND CONCEPTS ........................................... 200
   Experimental approaches .................................... 200
   Semiconductors and their surfaces .......................... 201
THEORETICAL METHODS ........................................... 212
   Theory-Hartree-Fock versus density functional theory ....... 213
   Basis sets-Gaussian orbital versus plane waves ............. 216
   Surface model-Cluster versus periodic ...................... 221
   Codes-Crystal vs. CASTEP ................................... 223
APPLICATIONS .................................................. 226
   Sulfides ................................................... 226
   Oxides ..................................................... 248
CONCLUDING REMARKS AND OUTLOOK ................................ 260
ACKNOWLEDGMENTS ............................................... 262
REFERENCES .................................................... 262

8  Quantum Chemistry and Classical Simulations of Metal
   Complexes in Aqueous Solutions
   David M. Sherman

INTRODUCTION .................................................. 273
   Experimental methods ....................................... 273
   Continuum models ........................................... 274
   Atomistic computational methods ............................ 274
QUANTUM CHEMISTRY OF METAL COMPLEXES: THEORETICAL BACKGROUND
AND METHODOLOGY ............................................... 275
   Quantum mechanics of many-electron systems ................. 275
   Bonding in molecules and complexes ......................... 280
   Calculating thermodynamic quantities from first
   principles ................................................. 283
   Simulations of solvent effects ............................. 284
APPLICATIONS OF QUANTUM CHEMISTRY TO METAL COMPLEXES IN
AQUEOUS SOLUTIONS ............................................. 285
   Group IIB cations Zn, Cd and Hg ............................ 285
   Group IB cations Cu, Ag, and Au ............................ 292
   Iron and manganese ......................................... 296
   Alkali earth and alkali metal cations ...................... 299
   Post-transition metals ..................................... 299
CLASSICAL ATOMISTIC SIMULATIONS OF METAL COMPLEXES IN
AQUEOUS SOLUTIONS ............................................. 301
   Background ................................................. 301
   Interatomic potentials ..................................... 302
   Molecular dynamics ......................................... 304
   Metropolis Monte Carlo simulations ......................... 305
   Applications ............................................... 305
THE NEXT ERA: AB INITIO MOLECULAR DYNAMICS .................... 310
   Application to copper(I) chloride solutions ................ 311
SUMMARY AND FUTURE DIRECTIONS ................................. 311
ACKNOWLEDGMENTS ............................................... 312
REFERENCES .................................................... 312

9  First Principles Theory of Mantle and Core Phases
   Lars Stixrude

INTRODUCTION .................................................. 319
THEORY ........................................................ 321
   Overview ................................................... 321
   Total energy, forces, and stresses ......................... 324
   Statistical mechanics ...................................... 326
SELECTED APPLICATIONS ......................................... 332
   Overview ................................................... 332
   Phase transformations in silicates ......................... 332
   High temperature properties of transition metals ........... 336
CONCLUSIONS AND OUTLOOK ....................................... 339
   Scale ...................................................... 339
   Duration ................................................... 339
   Materials .................................................. 340
ACKNOWLEDGMENTS ............................................... 340
REFERENCES .................................................... 340

10 A Computational Quantum Chemical Study of the Bonded
   Interactions in Earth Materials and Structurally and
   Chemically Related Molecules
   G.V. Gibbs, Monte B. Boisen, Jr., Lesa L. Beverly,
   Kevin M. Rosso

INTRODUCTION .................................................. 345
BOND LENGTH AND BOND STRENGTH CONNECTIONS FOR OXIDE, 
FLUORIDE, NITRIDE, AND SULFIDE MOLECULAR AND CRYSTALLINE
MATERIALS ..................................................... 345
   Bond lengths and crystal radii ............................. 345
   Bonded interactions ........................................ 346
   Pauling bond strength and bond length variations ........... 347
   Brown and Shannon bond strength and bond length
   variations ................................................. 348
   Bond strength p and bond length variations ................. 348
   Bond number and bond length variations ..................... 350
   Nitride, fluoride and sulfide bond strength and bond
   length variations .......................................... 351
   Bond strength and crystal radii ............................ 352
FORCE CONSTANTS, COMPRESSIBILITIES OF COORDINATED POLYHEDRA,
AND POTENTIAL ENERGY MODELS ................................... 353
   Force constants and bond length variations ................. 353
   Force constants and polyhedral compressibilities ........... 354
   Force fields and bond length and angle variations .......... 355
   Generation of new and viable structure types for silica .... 357
CALCULATED ELECTRON DENSITY DISTRIBUTIONS FOR EARTH
MATERIALS AND RELATED MOLECULES ............................... 358
   Bond critical point properties and electron density
   distributions .............................................. 358
   Bond critical point properties calculated for molecules .... 359
   Bond critical point properties calculated for earth
   materials .................................................. 361
   Variable radius of the oxide anion ......................... 362
BOND STRENGTH, ELECTRON DENSITY, AND BOND TYPE CONNECTIONS .... 365
SITES OF POTENTIAL ELECTROPHILIC ATTACK IN EARTH MATERIALS .... 367
   Bonded and nonbonded electron pairs ........................ 367
   Bonded and nonbonded electron lone pairs for a silicate
   molecule ................................................... 369
   Localization of the electron density for the silica
   polymorphs ................................................. 370
   Nonbonded lone pair electrons for low albite ............... 372
CONCLUDING REMARKS ............................................ 373
ACKNOWLEDGMENTS ............................................... 375
REFERENCES .................................................... 376

11 Modeling the Kinetics and Mechanisms of Petroleum
   and Natural Gas Generation: A First Principles Approach
   Yitian Xiao

INTRODUCTION .................................................. 383
AB INITIO METHOD .............................................. 385
KEROGEN DECOMPOSITION AND OIL AND GAS GENERATION .............. 390
   Introduction ............................................... 390
   The kinetics and mechanisms of hydrocarbon thermal
   cracking ................................................... 394
   Computational methods ...................................... 396
   Initiation reaction (homolytic scission) ................... 397
   Hydrogen transfer reaction ................................. 400
   Radical decomposition (P scission) ......................... 403
   Elementary reactions versus overall hydrocarbon cracking ... 406
   Summary .................................................... 407
ISOTOPIC FRACTIONATION AND NATURAL GAS GENERATION ............. 408
   Introduction ............................................... 408
   Transition state theory and gas isotopic fractionation ..... 409
   Natural gas plot ........................................... 410
   Carbon kinetic isotope effect: homolytic scission verses 
   β scission ................................................. 411
   Biogenic gas versus thermogenic gas ........................ 415
   Summary .................................................... 416
POSSIBLES ROLES OF MINERALS AND TRANSITION METALS IN OIL AND
GAS GENERATION ................................................ 416
   Introduction ............................................... 416
   Acid catalyzed isomerization of C7 alkanes and light HC
   origin ..................................................... 417
   Transition metal catalysis and natural gas generation ...... 420
WATER-ORGANIC INTERACTIONS AND THEIR IMPLICATIONS ON
PETROLEUM FORMATION ........................................... 423
   Introduction ............................................... 423
   Why don't oil and water mix? ............................... 424
   The kinetics and mechanisms of water-organic (kerogen)
   interaction ................................................ 425
   Hydrolysis of ether linkages ............................... 425
   Hydrolysis of ester linkages ............................... 427
   Water-hydrocarbon radical interactions ..................... 428
   Hydrolytic disproportionate and kerogen oxidation .......... 430
CONCLUSIONS ................................................... 431
ACKNOWLEDGMENTS ............................................... 431
REFERENCES .................................................... 431

12 Calculating the NMR Properties of Minerals, Glasses,
   and Aqueous Species
   John D. Tossell

INTRODUCTION .................................................. 437
BASIC THEORY OF NMR SHIELDING ................................. 437
A BRIEF HISTORY OF NMR CALCULATIONS ON MOLECULES .............. 439
PRESENT STATUS OF NMR CALCULATIONS ON MOLECULES ............... 439
CALCULATION OF SI NMR SHIELDINGS IN ALUMINOSILICATES .......... 443
CALCULATIONS OF SHIELDINGS FOR OTHER ELECTROPOSITIVE
ELEMENTS: B, P, SE, NA AND RB ................................. 446
CALCULATION OF ELECTRIC FIELD GRADIENTS AT О IN
ALUMINOSILICATES .............................................. 448
CALCULATION OF NMR SHIELDING OF О IN OXIDES ................... 449
CALCULATION OF NMR SHIELDINGS FOR TRANSITION METAL COMPOUNDS
AND HEAVY MAIN-GROUP METAL COMPOUNDS .......................... 450
CALCULATIONS OF С NMR SHIELDINGS IN ORGANIC GEOCHEMISTRY ...... 450
APPLICATIONS OF NMR SHIELDING CALCULATIONS IN GEOCHEMISTRY
AND MINERALOGY ................................................ 451
A FINAL WORD ON INTERPRETATION OF CALCULATED NMR SHIELDINGS ... 453
CONCLUSION .................................................... 454
ACKNOWLEDGMENTS ............................................... 454
REFERENCES .................................................... 454

13 Interpretation of Vibrational Spectra Using Molecular
   Orbital Theory Calculations
   James D. Kubicki

INTRODUCTION .................................................. 459
ENERGY MINIMIZATIONS .......................................... 460
CALCULATION OF SPECTRA ........................................ 461
CALCULATION OF FREQUENCIES .................................... 462
CALCULATION OF IR AND RAMAN INTENSITIES ....................... 463
   Infrared intensities ....................................... 463
   Raman intensities .......................................... 465
VIBRATIONAL BANDWIDTHS ........................................ 466
EXAMPLES AND COMPARISON TO EXPERIMENT ......................... 467
   Gas-phase .................................................. 467
   Aqueous-phase .............................................. 469
   Mineral surfaces ........................................... 473
   Minerals ................................................... 475
   Glasses .................................................... 475
CONCLUSIONS AND FUTURE DIRECTIONS ............................. 478
ACKNOWLEDGMENTS ............................................... 478
REFERENCES .................................................... 479

14 Molecular Orbital Modeling and Transition State Theory
   in Geochemistry
   Mihali A. Felipe, Titian Xiao, James D. Kubicki

INTRODUCTION .................................................. 485
TRANSITION STATE THEORY ....................................... 486
   Conventional transition state theory ....................... 486
   Potential energy surfaces and MO calculations .............. 490
   Other rate theories ........................................ 494
DETERMINATION OF ELEMENTARY STEPS AND REACTION MECHANISMS ..... 496
   Stationary-point searching schemes ......................... 496
   Transition state initial guesses ........................... 498
   Optimization to stationary points .......................... 501
MO-TST STUDIES IN THE GEOSCIENCES ............................. 504
   Introduction and definitions ............................... 504
   Reaction pathways of mineral-water interaction ............. 505
   Atmospheric reactions of global significance ............... 511
ACCURACY ISSUES ............................................... 517
   Basis sets ................................................. 517
   Basis set superposition error .............................. 518
   Methods .................................................... 518
   Long-range interactions .................................... 519
   Activation energies and zero point energies ................ 519
   Quantum tunneling .......................................... 520
CONCLUSIONS AND FUTURE DIRECTIONS ............................. 521
ACKNOWLEDGMENTS ............................................... 522
LIST OF SYMBOLS ............................................... 522
REFERENCES .................................................... 524


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:22:58 2019. Размер: 25,952 bytes.
Посещение N 1750 c 13.12.2011