Preface ..................................................... XI
List of Contributors ...................................... XIII
1 General Concepts ............................................. 1
Kenzo Matsuki and Kazunori Ozawa
1.1 Brief Outline of Batteries .............................. 1
1.1.1 Galvanic Cell System - Aqueous Electrolyte
System ........................................... 2
1.1.2 Lithium-Cell System - Nonaqueous Electrolyte
System ........................................... 4
1.2 Early Development of Lithium-Ion Batteries .............. 5
1.2.1 Ceramics Production Capability ................... 5
1.2.2 Coating Technology ............................... 6
1.2.3 LiPFc, as a Salt for Electrolytes ................ 6
1.2.4 Graphite Conductor in the Cathode ................ 6
1.2.5 Using Hard Carbon for the Anode .................. 6
1.2.6 Nonwoven Shut-down Separator ..................... 6
1.2.7 Ni-Plated Fe Can ................................. 7
1.3 Toward a Realistic Goal ................................. 7
References ................................................... 9
2 Lithium Insertion Materials Having Spinel-Framework
Structure for Advanced Batteries ............................ 11
Kingo Ariyoshi, Yoshinari Makimura, and Tsutomu Ohzuku
2.1 Introduction ........................................... 11
2.2 Structural Description of Spinel ....................... 12
2.3 Derivatives of Spinel-Framework Structure .............. 15
2.3.1 Superlattice Structures Derived from "Spinel" ... 15
2.3.2 Examples of Superstructure Derived from
"Spinel" ........................................ 20
2.4 Electrochemistry of Lithium Insertion Materials
Having Spinel-Framework Structure ...................... 24
2.4.1 Lithium Manganese Oxides (LMO) .................. 24
2.4.2 Lithium Titanium Oxide (LTO) .................... 27
2.4.3 Lithium Nickel Manganese Oxide (LiNiMO) ......... 28
2.5 An Application of Lithium Insertion Materials Having
Spinel-Framework Structure to 12 V "Lead-Free"
Accumulators ........................................... 29
2.5.1 Twelve-Volt Batteries Consisting of Lithium
Titanium Oxide (LTO) and Lithium Manganese
Oxide (LMO) ..................................... 32
2.5.2 Twelve-Volt Batteries Consisting of Lithium
Titanium Oxide (LTO) and Lithium Nickel
Manganese Oxide (LiNiMO) ........................ 34
2.6 Concluding Remarks ..................................... 36
References .................................................. 37
3 Overlithiated Li1+x(NizCo1-2zMnz)1-xO2 as Positive
Electrode Materials for Lithium-Ion Batteries ............... 39
Naoaki Kumagai andJung-Min Kim
3.1 Introduction ........................................... 39
3.2 Co-Free Li1+x(Ni1/2Mn1/2)1-xO2 ............................ 40
3.3 Li1+x(NizCo1-2zMn1/3)1-xO2 ................................ 44
3.4 Other Li1+x(NizCo1-2zMnz)1-xO2 Materials .................. 48
3.5 Conclusion ............................................. 50
References .................................................. 51
4 Iron-Based Rare-Metal-Free Cathodes ......................... 53
Shigeto Okada and Jun-ichi Yamaki
4.1 Introduction ........................................... 53
4.2 2D Layered Rocksalt-Type Oxide Cathode ................. 54
4.3 3D NASICON-Type Sulfate Cathode ........................ 55
4.4 3D Olivine-Туре Phosphate Cathode ...................... 58
4.5 3D Calcite-Type Borate Cathode ......................... 62
4.6 3D Perovskite-Type Fluoride Cathode .................... 64
4.7 Summary ................................................ 65
References .................................................. 65
5 Thermodynamics of Electrode Materials for Lithium-Ion
Batteries .................................................. 67
Rachid Yazami
5.1 Introduction ........................................... 67
5.2 Experimental ........................................... 71
5.2.1 The ETMS ........................................ 71
5.2.2 Electrochemical Cells: Construction and
Formation Cycles ................................ 73
5.3 Results ................................................ 74
5.3.1 Carbonaceous Anode Materials .................... 74
5.3.1.1 Pre-coke (HTT < 500°C) ................. 77
5.3.1.2 Cokes HTT 900-1700°С ................... 79
5.3.1.3 Cokes HTT 2200 and 2600°С .............. 80
5.3.1.4 Natural Graphite ....................... 82
5.3.1.5 Entropy and Degree of Graphitization ... 84
5.3.2 Cathode Materials ............................... 86
5.3.2.1 LiCoO2 ................................. 86
5.3.2.2 LiMn2O4 ................................ 90
5.3.2.3 Effect of Cycling on Thermodynamics: ... 93
5.4 Conclusion ............................................. 94
References .................................................. 96
6 Raman Investigation of Cathode Materials for Lithium
Batteries .................................................. 103
Rita Baddour-Hadjean and Jean-Pierre Pereira-Ramos
6.1 Introduction .......................................... 103
6.2 Raman Microspectrometry: Principle and
Instrumentation ....................................... 104
6.2.1 Principle ...................................... 104
6.2.2 Instrumentation ................................ 105
6.3 Transition Metal-Oxide-Based Compounds ................ 106
6.3.1 LiCoO2 ......................................... 107
6.3.2 LiNiO2 and Its Derivative Compounds
LiNi1-yCoyO2(0 < y < 1) ......................... 113
6.3.3 Manganese Oxide-Based Compounds ................ 114
6.3.3.1 MnO2-Type Compounds ................... 114
6.3.3.2 Ternary Lithiated LixMnOy Compounds ... 117
6.3.4 V2O5 ........................................... 127
6.3.4.1 V2O5 Structure ........................ 127
6.3.4.2 Structural Features of the LixV2O5
Phases ................................ 131
6.3.5 Titanium Dioxide ............................... 143
6.4 Phospho-Olivine LiMPO4 Compounds ...................... 149
6.5 General Conclusion .................................... 156
References ................................................. 157
7 Development of Lithium-Ion Batteries: From the Viewpoint
of Importance of the Electrolytes .......................... 163
Masaki Yoshio, Hiroyoshi Nakamura, and Nikolay Dimov
7.1 Introduction .......................................... 163
7.2 General Design to Find Additives for Improving
the Performance of LIB ........................... 166
7.3 A Series of Developing Processes to Find Novel
Additives ............................................. 169
7.4 Cathodic and the Other Additives for LI Bs ............ 172
7.5 Conditioning .......................................... 174
References ................................................. 177
8 Inorganic Additives and Electrode Interface ................ 179
Shinichi Komaba
8.1 Introduction .......................................... 179
8.2 Transition Metal Ions and Cathode Dissolution ......... 180
8.2.1 Mn(II) Ion ..................................... 181
8.2.2 Co(II) Ion ..................................... 184
8.2.3 Ni(II) Ion ..................................... 186
8.3 How to Suppress the Mn(II) Degradation ................ 187
8.3.1 Lil, LiBr, and NH4I ............................ 188
8.3.2 2-Vinylpyridine ................................ 190
8.4 Alkali Metal Ions ..................................... 197
8.4.1 Na+ Ion ........................................ 197
8.4.2 K+ Ion ......................................... 204
8.5 Alkali Salt Coating ................................... 207
8.6 Summary ............................................... 209
References ................................................. 210
9 Characterization of Solid Polymer Electrolytes and
Fabrication of all Solid-State Lithium Polymer Secondary
Batteries .................................................. 213
Masataka Wakihara, Masanobu Nakayama, and Yuki Kato
9.1 Molecular Design and Characterization of Polymer
Electrolytes with Li Salts ............................ 213
9.1.1 Introduction ................................... 213
9.1.2 Solid Polymer Electrolytes with Plasticizers ... 217
9.1.3 Preparation of SPE Films with B-PEG and
Al-PEG Plasticizers ............................ 217
9.1.4 Evaluation of SPE Films with B-PEG
Plasticizers ................................... 219
9.1.5 Ionic Conductivity of SPE Films with B-PEG
Plasticizers ................................... 223
9.1.6 Transport Number of Lithium Ions ............... 227
9.1.7 Electrochemical Stability ...................... 229
9.1.8 Summary ........................................ 230
9.2 Fabrication of All-Solid-State Lithium Polymer
Battery ............................................... 231
9.2.1 Introduction ................................... 231
9.2.2 Required Ionic Conductivity of SPE ............. 231
9.2.3 Difference between Conventional Battery with
Liquid Electrolyte and All-Solid-State LPB ..... 232
9.2.4 Fabrication and Electrochemical Performance
of LPBs Using SPE with B-PEG and / or Al-PEG
Plasticizers ................................... 235
9.2.5 Fabrication of a Nonflammable Lithium Polymer
Battery and its Electrochemical Evaluation ..... 243
9.2.6 Summary ........................................ 250
References ................................................. 251
10 Thin-Film Metal-Oxide Electrodes for Lithium
Microbatteries ............................................. 257
Jean-Pierre Pereira-Ramos and Rita Baddour-Hadjean
10.1 Introduction .......................................... 257
10.2 Lithium Cobalt Oxide Thin Films ....................... 259
10.2.1 Sputtered LiCoO2 Films ......................... 259
10.2.1.1 Liquid Electrolyte ................... 259
10.2.1.2 Solid-State Electrolyte .............. 262
10.2.2 PLD LiCoO2 Films ............................... 265
10.2.3 CVD LiCoO2 Films ............................... 269
10.2.4 LiCoO2 Films Prepared by Chemical Routes ....... 269
10.2.5 Conclusion ..................................... 271
10.3 LiNiO2 and Its Derivatives Compounds LiNi1-xMO2 ........ 272
10.3.1 Solid-State Electrolyte ........................ 273
10.3.2 Liquid Electrolyte ............................. 274
10.3.3 Li - Ni - Mn Films ............................. 274
10.3.4 Conclusion ..................................... 275
10.4 LiMn2O4 Films .......................................... 275
10.4.1 Sputtered LiMn2O4 Films ......................... 276
10.4.2 PLD LiMn2O4 Films ............................... 277
10.4.3 ESD LiMn2O4 Films ............................... 281
10.4.4 LiMn2O4 Films Prepared Through Chemical
Routes ......................................... 282
10.4.5 Substituted LiMn2-xMxO4 Spinel Films ............ 283
10.4.6 Conclusion ..................................... 283
10 V205 Thin Films ........................................ 285
10.5.1 Sputtered V2O5 Thin Films ...................... 286
10.5.1.1 Liquid Electrolyte .................... 286
10.5.1.2 Solid-State Electrolyte ............... 294
10.5.2 PLD V2O5 Thin Films ............................ 296
10.5.3 CVD V2O5 Films ................................. 297
10.5.4 V2O5 Films Prepared by Evaporation
Techniques ..................................... 297
10.5.5 V2O5 Films Prepared by Electrostatic Spray
Deposition .................................... 298
10.5.6 V2O5 Films Prepared via Solution Techniques .... 299
10.5.7 Conclusion ..................................... 300
10.6 MoO3 Thin Films ....................................... 301
10.6.1 Liquid Electrolyte ............................. 301
10.6.2 Solid State Electrolyte ........................ 302
10.6.3 Conclusion ..................................... 303
10.7 General Conclusions ................................... 303
References ................................................. 305
11 Research and Development Work on Advanced Lithium-Ion
Batteries for High-Performance Environmental Vehicles ...... 313
Hideaki Horie
11.1 Introduction .......................................... 313
11.2 Energy Needed to Power an EV .......................... 313
11.3 Quest for a High-Power Characteristic in Lithium-Ion
Batteries ............................................. 315
11.4 Cell Thermal Behavior and Cell System Stability ....... 322
Further Reading ....................................... 326
Index ...................................................... 329
|