Khesin B. The geometry of infinite-dimensional groups (Berlin; Heidelberg, 2009). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаKhesin B. The geometry of infinite-dimensional groups / B.Khesin, R.Wendt. - Berlin; Heidelberg: Springer, 2009. - xii, 304 p. - (Ergebnisse der Mathematik und ihrer Grenzgebiete. 3 Folge; Bd.51). - Ref.: p.281-300. - Ind.: p.301-304. - ISBN 978-3-540-85205-6
 

Место хранения: 015 | Библиотека Института гидродинамики CO РАН | Новосибирск

Оглавление / Contents
 
Preface ....................................................... VII
Introduction .................................................... 1

I  Preliminaries ................................................ 7

1  Lie Groups and Lie Algebras .................................. 7
   1.1  Lie Groups and an Infinite-Dimensional Setting .......... 7
   1.2  The Lie Algebra of a Lie Group .......................... 9
   1.3  The Exponential Map .................................... 12
   1.4  Abstract Lie Algebras .................................. 15
2  Adjoint and Coadjoint Orbits ................................ 17
   2.1  The Adjoint Representation ............................. 17
   2.2  The Coadjoint Representation ........................... 19
3  Central Extensions .......................................... 21
   3.1  Lie Algebra Central Extensions ......................... 22
   3.2  Central Extensions of Lie Groups ....................... 24
4  The Euler Equations for Lie Groups .......................... 26
   4.1  Poisson Structures on Manifolds ........................ 26
   4.2  Hamiltonian Equations on the Dual of a Lie Algebra ..... 29
   4.3  A Riemannian Approach to the Euler Equations ........... 30
   4.4  Poisson Pairs and Bi-Hamiltonian Structures ............ 35
   4.5  Integrable Systems and the Liouville-Arnold Theorem .... 38
5  Symplectic Reduction ........................................ 40
   5.1  Hamiltonian Group Actions .............................. 41
   5.2  Symplectic Quotients ................................... 42
6  Bibliographical Notes ....................................... 44

II Infinite-Dimensional Lie Groups: Their Geometry, Orbits,
   and Dynamical Systems ....................................... 47

1  Loop Groups and Affine Lie Algebras ......................... 47
   1.1  The Central Extension of the Loop Lie algebra .......... 47
   1.2  Coadjoint Orbits of Afflne Lie Groups .................. 52
   1.3  Construction of the Central Extension of the Loop
        Group .................................................. 58
   1.4  Bibliographical Notes .................................. 65
2  Diffeomorphisms of the Circle and the Virasoro Bott Group ... 67
   2.1  Central Extensions ..................................... 67
   2.2  Coadjoint Orbits of the Group of Circle
        Diffeomorphisms ........................................ 70
   2.3  The Virasoro Coadjoint Action and Hill's Operators ..... 72
   2.4  The Virasoro-Bott Group and the Korteweg-de Vries
        Equation ............................................... 80
   2.5  The Bi-Hamiltonian Structure of the KdV Equation ....... 82
   2.6  Bibliographical Notes .................................. 86
3  Groups of Diffeomorphisms ................................... 88
   3.1  The Group of Volume-Preserving Diffeomorphisms
        and Its Coadjoint Representation ....................... 88
   3.2  The Euler Equation of an Ideal Incompressible Fluid .... 90
   3.3  The Hamiltonian Structure and First Integrals
        of the Euler Equations for an Incompressible Fluid ..... 91
   3.4  Semidirect Products: The Group Setting for an Ideal
        Magnetohydrodynamics and Compressible Fluids ........... 95
   3.5  Symplectic Structure on the Space of Knots and the
        Landau-Lifschitz Equation .............................. 99
   3.6  Diffeomorphism Groups as Metric Spaces ................ 105
   3.7  Bibliographical Notes ................................. 109
4  The Group of Pseudodifferential Symbols .................... 111
   4.1  The Lie Algebra of Pseudodifferential Symbols ......... 111
   4.2  Outer Derivations and Central Extensions of ψ DS ...... 113
   4.3  The Manin Triple of Pseudodifferential Symbols ........ 117
   4.4  The Lie Group of α-Pseudodifferential Symbols ......... 119
   4.5  The Exponential Map for Pseudodifferential Symbols .... 122
   4.6  Poisson Structures on the Group of
        α-Pseudodifferential Symbols .......................... 124
   4.7  Integrable Hierarchies on the Poisson Lie Group
        fig.1int .................................................. 129
   4.8  Bibliographical Notes ................................. 132
5  Double Loop and Elliptic Lie Groups ........................ 134
   5.1  Central Extensions of Double Loop Groups and Their
        Lie Algebras .......................................... 134
   5.2  Coadjoint Orbits ...................................... 136
   5.3  Holomorphic Loop Groups and Monodromy ................. 138
   5.4  Digression: Definition of the Calogero-Moser
        Systems ............................................... 142
   5.5  The Trigonometric Calogero-Moser System and Affine
        Lie Algebras .......................................... 146
   5.6  The Elliptic Calogero-Moser System and Elliptic Lie
        Algebras .............................................. 149
   5.7  Bibliographical Notes ................................. 152

III Applications of Groups: Topological and Holomorphic
    Gauge Theories ............................................ 155

1  Holomorphic Bundles and Hitchin Systems .................... 155
   1.1  Basics on Holomorphic Bundles ......................... 155
   1.2  Hitchin Systems ....................................... 159
   1.3  Bibliographical Notes ................................. 162
2  Poisson Structures on Moduli Spaces ........................ 163
   2.1  Moduli Spaces of Flat Connections on Riemann
        Surfaces .............................................. 163
   2.2  Poincare Residue and the Cauchy Stokes Formula ........ 170
   2.3  Moduli Spaces of Holomorphic Bundles .................. 173
   2.4  Bibliographical Notes ................................. 179
3  Around the Chern-Simons Functional ......................... 180
   3.1  A Reminder on the Lagrangian Formalism ................ 180
   3.2  The Topological Chern-Simons Action Functional ........ 184
   3.3  The Holomorphic Chern-Simons Action Functional ........ 187
   3.4  A Reminder on Linking Numbers ......................... 189
   3.5  The Abelian Chern-Simons Path Integral and Linking
        Numbers ............................................... 192
   3.6  Bibliographical Notes ................................. 196
4  Polar Homology ............................................. 197
   4.1  Introduction to Polar Homology ........................ 197
   4.2  Polar Homology of Projective Varieties ................ 202
   4.3  Polar Intersections and Linkings ...................... 206
   4.4  Polar Homology for Affine Curves ...................... 209
   4.5  Bibliographical Notes ................................. 211

Appendices .................................................... 213
   A.l  Root Systems .......................................... 213
        1.1  Finite Root Systems .............................. 213
        1.2  Semisimple Complex Lie Algebras .................. 215
        1.3  Affine and Elliptic Root Systems ................. 216
        1.4  Root Systems and Calogero Moser Hamiltonians ..... 218
   A.2  Compact Lie Groups .................................... 221
        2.1  The Structure of Compact Groups .................. 221
        2.2  A Cohomology Generator for a Simple Compact
             Group ............................................ 224
   A.3  Krichever-Novikov Algebras ............................ 225
        3.1  Holomorphic Vector Fields on fig.1* and the
             Virasoro Algebra ................................. 225
        3.2  Definition of the Krichever-Novikov Algebras
             and Almost Grading ............................... 226
        3.3  Central Extensions ............................... 228
        3.4  Affine Krichever-Novikov Algebras, Coadjoint
             Orbits, and Holomorphic Bundles .................. 231
   A.4  Kahler Structures on the Virasoro and Loop Group
        Coadjoint Orbits ...................................... 234
        4.1  The Kahler Geometry of the Homogeneous Space
             Diff(S1)/S1 ...................................... 234
        4.2  The Action of Diff(S1) and Kahler Geometry
             on the Based Loop Spaces ......................... 237
   A.5   Diffeomorphism Groups and Optimal Mass Transport ..... 240
        5.1  The Inviscid Burgers Equation as a Geodesic
             Equation on the Diffeomorphism Group ............. 240
        5.2  Metric on the Space of Densities and the Otto
             Calculus ......................................... 244
        5.3  The Hamiltonian Framework of the Riemannian
             Submersion ....................................... 247
   A.6  Metrics and Diameters of the Group of Hamiltonian
        Diffeomorphisms ....................................... 250
        6.1  The Hofer Metric and Bi-invariant Pseudometrics
             on the Group of Hamiltonian Diffeomorphisms ...... 250
        6.2  The Infinite L2-Diameter of the Group of
             Hamiltonian Diffeomorphisms ...................... 252
   A.7  Semidirect Extensions of the Diffeomorphism Group
        and Gas Dynamics ...................................... 256
   A.8  The Drinfeld Sokolov Reduction ........................ 260
        8.1  The Drinfeld Sokolov Construction ................ 260
        8.2  The Kupershmidt-Wilson Theorem and the Proofs .... 263
   A.9  The Lie Algebra gl ................................... 267
        9.1  The Lie Algebra gl and Its Subalgebras .......... 267
        9.2  The Central Extension of gl ..................... 268
        9.3  g-Difference Operators and gl ................... 269
   A.10 Torus Actions on the Moduli Space of Flat
        Connections ........................................... 272
        10.1 Commuting Functions on the Moduli Space .......... 272
        10.2 The Case of SU(2) ................................ 274
        10.3 SL(n, fig.1) and the Rational Ruijsenaars-Schneider
             System ........................................... 277
   References ................................................. 281

Index ......................................................... 301


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:22:52 2019. Размер: 14,402 bytes.
Посещение N 1411 c 08.11.2011