Dresselhaus M.S. Group theory: application to the physics of condensed matter (Berlin; Heidelberg, 2008). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаDresselhaus M.S. Group theory: application to the physics of condensed matter / M.S.Dresselhaus, G.Dresselhaus, A.Jorio. - Berlin; Heidelberg: Springer-Verlag, 2008. - xv, 582 p.: ill. - Ref.: p.549-552. - Ind.: p.553-582. - ISBN 978-3-540-32897-1
 

Оглавление / Contents
 
Part I  Basic Mathematics

1  Basic Mathematical Background: Introduction .................. 3
   1.1  Definition of a Group ................................... 3
   1.2  Simple Example of a Group ............................... 3
   1.3  Basic Definitions ....................................... 6
   1.4  Rearrangement Theorem ................................... 7
   1.5  Cosets .................................................. 7
   1.6  Conjugation and Class ................................... 9
   1.7  Factor Groups .......................................... 11
   1.8  Group Theory and Quantum Mechanics ..................... 11
2  Representation Theory and Basic Theorems .................... 15
   2.1  Important Definitions .................................. 15
   2.2  Matrices ............................................... 16
   2.3  Irreducible Representations ............................ 17
   2.4  The Unitarity of Representations ....................... 19
   2.5  Schur's Lemma (Part 1) ................................. 21
   2.6  Schur's Lemma (Part 2) ................................. 23
   2.7  Wonderful Orthogonality Theorem ........................ 25
   2.8  Representations and Vector Spaces ...................... 28
3  Character of a Representation ............................... 29
   3.1  Definition of Character ................................ 29
   3.2  Characters and Class ................................... 30
   3.3  Wonderful Orthogonality Theorem for Character .......... 31
   3.4  Reducible Representations .............................. 33
   3.5  The Number of Irreducible Representations .............. 35
   3.6  Second Orthogonality Relation for Characters ........... 36
   3.7  Regular Representation ................................. 37
   3.8  Setting up Character Tables ............................ 40
   3.9  Schoenflies Symmetry Notation .......................... 44
   3.10 The Hermann-Mauguin Symmetry Notation .................. 46
   3.11 Symmetry Relations and Point Group Classifications ..... 48
4  Basis Functions ............................................. 57
   4.1  Symmetry Operations and Basis Functions ................ 57
   4.2  Basis Functions for Irreducible Representations ........ 58
   4.3  Projection Operators fig.3kln) ............................ 64
   4.4  Derivation of an Explicit Expression for fig.3kℓn) ........ 64
   4.5  The Effect of Projection Operations on an Arbitrary
        Function ............................................... 65
   4.6  Linear Combinations of Atomic Orbitals for Three
        Equivalent Atoms at the Corners of an Equilateral
        Triangle ............................................... 67
   4.7  The Application of Group Theory to Quantum Mechanics ... 70

Part II Introductory Application to Quantum Systems

5  Splitting of Atomic Orbitals in a Crystal Potential ......... 79
   5.1  Introduction ........................................... 79
   5.2  Characters for the Full Rotation Group ................. 81
   5.3  Cubic Crystal Field Environment for a Paramagnetic
        Transition Metal Ion ................................... 85
   5.4  Comments on Basis Functions ............................ 90
   5.5  Comments on the Form of Crystal Fields ................. 92
6  Application to Selection Rules and Direct Products .......... 97
   6.1  The Electromagnetic Interaction as a Perturbation ...... 97
   6.2  Orthogonality of Basis Functions ....................... 99
   6.3  Direct Product of Two Groups .......................... 100
   6.4  Direct Product of Two Irreducible Representations ..... 101
   6.5  Characters for the Direct Product ..................... 103
   6.6  Selection Rule Concept in Group Theoretical Terms ..... 105
   6.7  Example of Selection Rules ............................ 106

Part III Molecular Systems

7  Electronic States of Molecules and Directed Valence ........ 113
   7.1  Introduction .......................................... 113
   7.2  General Concept of Equivalence ........................ 115
   7.3  Directed Valence Bonding .............................. 117
   7.4  Diatomic Molecules .................................... 118
        7.4.1  Homonuclear Diatomic Molecules ................. 118
        7.4.2  Heterogeneous Diatomic Molecules ............... 120
   7.5  Electronic Orbitals for Multiatomic Molecules ......... 124
        7.5.1  The NH3 Molecule ............................... 124
        7.5.2  The CH4 Molecule ............................... 125
        7.5.3  The Hypothetical SH6 Molecule .................. 129
        7.5.4  The Octahedral SF6 Molecule .................... 133
   7.6  σ- and π-Bonds ....................................... 134
   7.7  Jahn-Teller Effect .................................... 141
8  Molecular Vibrations, Infrared, and Raman Activity ......... 147
   8.1  Molecular Vibrations: Background ...................... 147
   8.2  Application of Group Theory to Molecular Vibrations ... 149
   8.3  Finding the Vibrational Normal Modes .................. 152
   8.4  Molecular Vibrations in H2O ........................... 154
   8.5  Overtones and Combination Modes ....................... 156
   8.6  Infrared Activity ..................................... 157
   8.7  Raman Effect .......................................... 159
   8.8  Vibrations for Specific Molecules ..................... 161
        8.8.1  The Linear Molecules ........................... 161
        8.8.2  Vibrations of the NH3 Molecule ................. 166
        8.8.3  Vibrations of the CH4 Molecule ................. 168
   8.9  Rotational Energy Levels .............................. 170
        8.9.1  The Rigid Rotator .............................. 170
        8.9.2  Wigner-Eckart Theorem .......................... 172
        8.9.3  Vibrational-Rotational Interaction ............. 174

Part IV Application to Periodic Lattices

9  Space Groups in Real Space ................................. 183
   9.1  Mathematical Background for Space Groups .............. 184
        9.1.1  Space Groups Symmetry Operations ............... 184
        9.1.2  Compound Space Group Operations ................ 186
        9.1.3  Translation Subgroup ........................... 188
        9.1.4  Symmorphic and Nonsymmorphic Space Groups ...... 189
   9.2  Bravais Lattices and Space Groups ..................... 190
        9.2.1  Examples of Symmorphic Space Groups ............ 192
        9.2.2  Cubic Space Groups and the Equivalence
               Transformation ................................. 194
        9.2.3  Examples of Nonsymmorphic Space Groups ......... 196
   9.3  Two-Dimensional Space Groups .......................... 198
        9.3.1  2D Oblique Space Groups ........................ 200
        9.3.2  2D Rectangular Space Groups .................... 201
        9.3.3  2D Square Space Group .......................... 203
        9.3.4  2D Hexagonal Space Groups ...................... 203
   9.4  Line Groups ........................................... 204
   9.5  The Determination of Crystal Structure and Space
        Group ................................................. 205
        9.5.1  Determination of the Crystal Structure ......... 206
        9.5.2  Determination of the Space Group ............... 206
10 Space Groups in Reciprocal Space and Representations ....... 209
   10.1 Reciprocal Space ...................................... 210
   10.2 Translation Subgroup .................................. 211
        10.2.1 Representations for the Translation Group ...... 211
        10.2.2 Bloch's Theorem and the Basis of the
               Translational Group ............................ 212
   10.3 Symmetry of k Vectors and the Group of the Wave
        Vector ................................................ 214
        10.3.1 Point Group Operation in r-space and
               k-space ........................................ 214
        10.3.2 The Group of the Wave Vector Gk and the Star
               of k ........................................... 215
        10.3.3 Effect of Translations and Point Group
               Operations on Bloch Functions .................. 215
   10.4 Space Group Representations ........................... 219
        10.4.1 Symmorphic Group Representations ............... 219
        10.4.2 Nonsymmorphic Group Representations and the
               Multiplier Algebra ............................. 220
   10.5 Characters for the Equivalence Representation ......... 221
   10.6 Common Cubic Lattices: Symmorphic Space Groups ........ 222
        10.6.1 The Г Point .................................... 223
        10.6.2 Points with k ≠ 0 .............................. 224
   10.7 Compatibility Relations ............................... 227
   10.8 The Diamond Structure: Nonsymmorphic Space Group ...... 230
        10.8.1 Factor Group and the Г Point ................... 231
        10.8.2 Points with k ≠ 0 .............................. 232
   10.9 Finding Character Tables for all Groups of the Wave
        Vector ................................................ 235

Part V Electron and Phonon Dispersion Relation

11 Applications to Lattice Vibrations ......................... 241
   11.1 Introduction .......................................... 241
   11.2 Lattice Modes and Molecular Vibrations ................ 244
   11.3 Zone Center Phonon Modes .............................. 246
        11.3.1 The NaCl Structure ............................. 246
        11.3.2 The Perovskite Structure ....................... 247
        11.3.3 Phonons in the Nonsymmorphic Diamond Lattice ... 250
        11.3.4 Phonons in the Zinc Blende Structure ........... 252
   11.4 Lattice Modes Away from k = 0 ......................... 253
        11.4.1  Phonons in NaCl at the X Point k = (Π/α)
                (100) ......................................... 254
        11.4.2  Phonons in BaTiO3 at the X Point .............. 256
        11.4.3  Phonons at the К Point in Two-Dimensional
                Graphite ...................................... 258
   11.5 Phonons in Те and α-Quartz Nonsymmorphic Structures ... 262
        11.5.1 Phonons in Tellurium ........................... 262
        11.5.2 Phonons in the α-Quartz Structure .............. 268
   11.6 Effect of Axial Stress on Phonons ..................... 272
12 Electronic Energy Levels in a Cubic Crystals ............... 279
   12.1 Introduction .......................................... 279
   12.2 Plane Wave Solutions at k = 0 ......................... 282
   12.3 Symmetrized Plane Solution Waves along the Δ-Axis ..... 286
   12.4 Plane Wave Solutions at the X Point ................... 288
   12.5 Effect of Glide Planes and Screw Axes ................. 294
13 Energy Band Models Based on Symmetry ....................... 305
   13.1 Introduction .......................................... 305
   13.2 k • p Perturbation Theory ............................. 307
   13.3 Example of k • p Perturbation Theory for a
        Nondegenerate Г1+ Band ................................. 308
   13.4 Two Band Model: Degenerate First-Order Perturbation
        Theory ................................................ 311
   13.5 Degenerate second-order k • p Perturbation Theory ..... 316
   13.6 Nondegenerate k • p Perturbation Theory at а Δ
        Point ................................................. 324
   13.7 Use of k • p Perturbation Theory to Interpret
        Optical Experiments ................................... 326
   13.8 Application of Group Theory to Valley-Orbit
        Interactions in Semiconductors ........................ 327
        13.8.1 Background ..................................... 328
        13.8.2 Impurities in Multivalley Semiconductors ....... 330
        13.8.3 The Valley-Orbit Interaction ................... 331
14 Spin-Orbit Interaction in Solids and Double Groups ......... 337
   14.1 Introduction .......................................... 337
   14.2 Crystal Double Groups ................................. 341
   14.3 Double Group Properties ............................... 343
   14.4 Crystal Field Splitting Including Spin-Orbit
        Coupling .............................................. 349
   14.5 Basis Functions for Double Group Representations ...... 353
   14.6 Some Explicit Basis Functions ......................... 355
   14.7 Basis Functions for Other Г8+ States .................. 358
   14.8 Comments on Double Group Character Tables ............. 359
   14.9 Plane Wave Basis Functions for Double Group
        Representations ....................................... 360
   14.10 Group of the Wave Vector for Nonsymmorphic Double
        Groups ................................................ 362
15 Application of Double Groups to Energy Bands with Spin ..... 367
   15.1 Introduction .......................................... 367
   15.2 E(k) for the Empty Lattice Including Spin-Orbit
        Interaction ........................................... 368
   15.3 The k • p Perturbation with Spin-Orbit Interaction .... 369
   15.4 E(k) for a Nondegenerate Band Including Spin-Orbit
        Interaction ........................................... 372
   15.5 E(k) for Degenerate Bands Including Spin-Orbit
        Interaction ........................................... 374
   15.6 Effective g-Factor .................................... 378
   15.7 Fourier Expansion of Energy Bands: Slater-Koster
        Method ................................................ 389
        15.7.1 Contributions at d = 0 ......................... 396
        15.7.2 Contributions at d = 1 ......................... 396
        15.7.3 Contributions at d = 2 ......................... 397
        15.7.4 Summing Contributions through d = 2 ............ 397
        15.7.5 Other Degenerate Levels ........................ 397

Part VI Other Symmetries

16 Time Reversal Symmetry ..................................... 403
   16.1 The Time Reversal Operator ............................ 403
   16.2 Properties of the Time Reversal Operator .............. 404
   16.3 The Effect of fig.4 on E(k), Neglecting Spin .............. 407
   16.4 The Effect of fig.4 on E(k), Including the Spin-Orbit
        Interaction ........................................... 411
   16.5 Magnetic Groups ....................................... 416
        16.5.1 Introduction ................................... 418
        16.5.2 Types of Elements .............................. 418
        16.5.3 Types of Magnetic Point Groups ................. 419
        16.5.4 Properties of the 58 Magnetic Point Groups
               {Ai, Mk} ....................................... 419
        16.5.5 Examples of Magnetic Structures ................ 423
        16.5.6 Effect of Symmetry on the Spin Hamiltonian
               for the 32 Ordinary Point Groups ............... 426
17 Permutation Groups and Many-Electron States ................ 431
   17.1 Introduction .......................................... 432
   17.2 Classes and Irreducible Representations of
        Permutation Groups .................................... 434
   17.3 Basis Functions of Permutation Groups ................. 437
   17.4 Pauli Principle in Atomic Spectra ..................... 440
        17.4.1 Two-Electron States ............................ 440
        17.4.2 Three-Electron States .......................... 443
        17.4.3 Four-Electron States ........................... 448
        17.4.4 Five-Electron States ........................... 451
        17.4.5 General Comments on Many-Electron States ....... 451
18 Symmetry Properties of Tensors ............................. 455
   18.1 Introduction .......................................... 455
   18.2 Independent Components of Tensors Under Permutation
        Group Symmetry ........................................ 458
   18.3 Independent Components of Tensors: Point Symmetry
        Groups ................................................ 462
   18.4 Independent Components of Tensors Under Full
        Rotational Symmetry ................................... 463
   18.5 Tensors in Nonlinear Optics ........................... 463
        18.5.1 Cubic Symmetry: Oh ............................. 464
        18.5.2 Tetrahedral Symmetry: Td ....................... 466
        18.5.3 Hexagonal Symmetry: D6h ........................ 466
   18.6 Elastic Modulus Tensor ................................ 467
        18.6.1 Full Rotational Symmetry: 3D Isotropy .......... 469
        18.6.2 Icosahedral Symmetry ........................... 472
        18.6.3 Cubic Symmetry ................................. 472
        18.6.4 Other Symmetry Groups .......................... 474
A  Point Group Character Tables ............................... 479
В  Two-Dimensional Space Groups ............................... 489
С  Tables for 3D Space Groups ................................. 499
   C.l  Real Space ............................................ 499
   C.2  Reciprocal Space ...................................... 503
D  Tables for Double Groups ................................... 521
E  Group Theory Aspects of Carbon Nanotubes ................... 533
   E.l  Nanotube Geometry and the (n, m) Indices .............. 534
   E.2  Lattice Vectors in Real Space ......................... 534
   E.3  Lattice Vectors in Reciprocal Space ................... 535
   E.4  Compound Operations and Tube Helicity ................. 536
   E.5  Character Tables for Carbon Nanotubes ................. 538
F  Permutation Group Character Tables ......................... 543
   References ................................................. 549

Index ......................................................... 553


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:22:52 2019. Размер: 22,651 bytes.
Посещение N 1894 c 08.11.2011