Foreword ........................................................ V
Preface ...................................................... XVII
List of Contributors .......................................... XIX
Part I Basic Concepts in Crystal Growth Technology .............. 1
1 Thermodynamic Modeling of Crystal-Growth Processes ........... 3
Eberhard Buhrig, Manfred Jürisch, Jurgen Korb, and Olf
Pätzold
1.1 Introduction ............................................ 3
1.2 General Approach of Thermodynamic Modeling .............. 4
1.2.1 Basics ........................................... 4
1.2.1.1 State Variables for the Description of
Equilibrium Conditions .................. 4
1.2.1.2 The ChemSage Software Package ........... 5
1.3 Crystal Growth in the System Si-C-O-Ar (Example 1) ...... 6
1.3.1 Selection of Species ............................. 7
1.3.2 Test Calculation, Check of Consistency ........... 7
1.3.3 Calculation of Gibbs Free Energy for Selected
Reactions ........................................ 8
1.3.4 Minimization of Gibbs Free Energy of Complex
Systems .......................................... 9
1.3.5 The Thermodynamic-Technological Model of the
Edge-Defined Film-Fed Growth of Silicon ......... 10
1.4 Crystal Growth of Carbon-Doped GaAs (Example 2) ........ 15
1.4.1 Components and Species in the System ............ 16
1.4.2 Results ......................................... 17
1.4.3 Extended Model .................................. 19
1.5 Summary and Conclusions ................................ 22
Acknowledgments ........................................ 23
References .................................................. 23
2 Modeling of Vapor-Phase Growth of SiC and AlN Bulk
Crystals .................................................... 25
Roman A. Talalaev, Alexander S. Segal, Eugene V. Yakovlev,
and Andrey N. Vorob'ev
2.1 Introduction ........................................... 25
2.2 Model Description ...................................... 28
2.2.1 Quasi-Thermodynamic Model of AlN and AlGaN
HVPE ............................................ 29
2.2.2 Modeling of Gas-Phase Nucleation in SiC CVD
and HTCVD ....................................... 30
2.3 Results and Discussions ................................ 31
2.3.1 GaN, AlN, and AlGaN HVPE ........................ 31
2.3.2 SiC HTCVD ....................................... 35
2.4 Conclusions ............................................ 38
References .................................................. 39
3 Advanced Technologies of Crystal Growth from Melt Using
Vibrational Influence ....................................... 41
Evgeny V. Zharikov
3.1 Introduction ........................................... 41
3.2 Axial Vibrational Control in Crystal Growth ............ 42
3.3 AVC-Assisted Czochralski Method ........................ 49
3.4 AVC-Assisted Bridgman Method ........................... 54
3.5 AVC-Assisted Floating Zone Method ...................... 58
3.6 Conclusions ............................................ 59
Acknowledgments ............................................. 60
References .................................................. 60
Part II Semiconductors ......................................... 65
4 Numerical Analysis of Selected Processes in Directional
Solidification of Silicon for Photovoltaics ................. 67
Koichi Kakimoto
4.1 Introduction ........................................... 67
4.2 Directional Solidification Method ...................... 67
4.3 Crystallization Process ................................ 68
4.4 Impurity Incorporation in Crystals ..................... 71
4.5 Summary ................................................ 74
Acknowledgment .............................................. 74
References .................................................. 74
5 Characterization and Control of Defects in VCz CaAs
Crystals Crown without B2O3 Encapsulant ..................... 75
Frank M. Kiessling
5.1 Introduction ........................................... 75
5.2 Retrospection .......................................... 76
5.3 Crystal Growth without B2O3 Encapsulant ................ 77
5.4 Inclusions, Precipitates and Dislocations .............. 80
5.5 Residual Impurities and Special Defect Studies ......... 83
5.6 Electrical and Optical Properties in SI GaAs ........... 84
5.7 Boron in SC GaAs ....................................... 89
5.8 Outlook on TMF-VCz ..................................... 91
5.9 Conclusions ............................................ 94
Acknowledgments ............................................. 95
References .................................................. 95
6 The Growth of Semiconductor Crystals (Ge, GaAs) by the
Combined Heater Magnet Technology .......................... 101
Peter Rudolph, Matthias Czupalla, Christiane Frank-
Rotsch, Frank-Michael Kiessling and Bernd Lux
6.1 Introduction .......................................... 101
6.2 Selected Fundamentals ................................. 102
6.2.1 Convection-Driven Forces ....................... 102
6.2.2 The Features of Traveling Magnetic Fields ...... 104
6.3 TMF Generation in Heater-Magnet Modules ............... 106
6.4 The HMM Design ........................................ 107
6.5 Numerical Modeling .................................... 109
6.6 Dummy Measurements .................................... 111
6.7 Growth Results under TMF .............................. 112
6.7.1 LEC of GaAs .................................... 112
6.7.2 VGF of Ge ...................................... 114
6.8 Conclusions and Outlook ............................... 118
Acknowledgment ............................................. 118
References ................................................. 119
7 Manufacturing of Bulk AlN Substrates ....................... 121
Oleg V. Avdeev, Tatiana Yu. Chemekova, Heikki Helava,
Yuri N. Makarov, Evgenii N. Mokhov, Sergei S. Nagalyuk,
M.G. Ramm, Alexander S. Segal, and Alexander I. Zhmakin
7.1 Introduction .......................................... 121
7.1.1 Substrates for Group III Nitride Devices ....... 121
7.1.2 Growth of Bulk Group III Nitride Crystals ...... 123
7.1.3 Sublimation Growth of AlN Crystals ............. 125
7.2 Modeling .............................................. 126
7.3 Experiment ............................................ 129
7.3.1 Pregrowth Processing ........................... 129
7.3.2 Seeding and Initial Growth ..................... 131
7.3.3 Growth of Bulk AlN Crystals .................... 131
7.4 Results and Discussion ................................ 131
7.5 Conclusions ........................................... 133
Acknowledgments ............................................ 133
References ................................................. 133
8 Interactions of Dislocations During Epitaxial Growth of
SiC and GaN ................................................ 137
Jochen Friedrich, Birgit Kallinger, Patrick Berwian, Elke
Meissner
8.1 Introduction .......................................... 137
8.2 Classification, Nomenclature and Characterization of
Dislocations in SiC and GaN ........................... 138
8.3 Conversion of Basal Plane Dislocations During SiC
Epitaxy ............................................... 141
8.3.1 Experimental Strategies for Obtaining High
Conversion Rates ............................... 141
8.3.2 Driving Force for BPD Conversion ............... 143
8.4 Reduction of Dislocations During Homoepitaxy of GaN ... 144
8.4.1 Objectives and Techniques ...................... 144
8.4.2 Driving Force for Dislocation Reduction ........ 145
8.5 Conclusions ........................................... 148
Acknowledgment ............................................. 148
References ................................................. 148
9 Low-Temperature Growth of Ternary III-V Semiconductor
Crystals from Antimonide-Based Quaternary Melts ............ 151
Partha S. Dutta
9.1 Introduction .......................................... 151
9.2 Crystal Growth from Quaternary Melts .................. 152
9.3 Advantages of Quaternary Melts ........................ 152
9.4 Synthesis and Bulk Crystal Growth ..................... 154
9.4.1 Growth from Ga1-xInxAs1-ySby Melt ................ 158
9.4.1.1 Growth of Ga1-xInxAs ................... 158
9.4.1.2 Growth of GaAs1-ySby ................... 161
9.4.2 Growth from Ga1-xInxP1-ySby Melt ................. 161
9.4.2.1 Growth of Ga1-xInxP .................... 161
9.4.3 Growth from Al1-xGaxAs1-ySby ..................... 163
9.4.3.1 Growth of Al1-xGaxAs ................... 163
9.4.3.2 Growth of AlAs1-ySby ................... 164
9.4.4 Growth from Al1-xInxAs1-ySby ..................... 164
9.4.4.1 Growth of Al1-xInxAs ................... 165
9.4.4.2 Growth of AlAs1-ySby ................... 165
9.4.5 Growth from Al1-xInxP1-ySby Melt ................. 165
9.4.5.1 Growth of Al1-xInxP .................... 166
9.4.6 Growth from Al1-xGaxP1-ySby Melt ................. 166
9.4.6.1 Growth of Al1-xGaxP .................... 166
9.4.7 Growth from Al1-x-yGaxInySb Melt ................. 167
9.4.7.1 Growth of Al1-xGaxSb ................... 168
9.4.8 Growth from InP1-x-yAsxSby Melt .................. 168
9.4.8.1 Growth of InP1-xAsy .................... 168
9.4.9 Growth from GaP1-x-yAsxSby Melt ................. 169
9.4.9.1 Growth of GaP1-yAsy ................... 169
9.4.10 Growth from AlP1-x-yAsxSby Melt ................. 170
9.4.10.1 Growth of AlP1-x-yAsy .................. 170
9.5 Conclusion ............................................ 171
References ................................................. 172
10 Mercury Cadmium Telluride (MCT) Growth Technology Using
ACRT and LPE ............................................... 175
Peter Capper
10.1 Introduction .......................................... 175
10.2 Bridgman/ACRT Growth of MCT ........................... 177
10.2.1 Introduction ................................... 177
10.2.2 Processing ..................................... 178
10.2.3 Accelerated Crucible Rotation Technique
(ACRT) ......................................... 178
10.2.3.1 Introduction .......................... 178
10.2.3.2 High-x Material ....................... 179
10.2.4 Summary ........................................ 182
10.3 Liquid Phase Epitaxy of MCT ........................... 184
10.3.1 Introduction ................................... 184
10.3.2 Growth ......................................... 185
10.3.3 Summary ........................................ 191
References ................................................. 192
11 The Use of a Platinum Tube as an Ampoule Support in the
Bridgman Growth of Bulk CZT Crystals ....................... 195
Narayanasamy Vijayan, Verónica Carcelén, and Ernesto
Diéguez
11.1 Introduction .......................................... 195
11.2 The Importance of the Solid/Liquid Interface .......... 197
11.3 Approaches for Crystal Growth Using Ampoule Support ... 199
11.4 Results and Discussions ............................... 201
11.5 Conclusions ........................................... 208
Acknowledgments ............................................ 209
References ................................................. 209
Part III Dielectrics .......................................... 211
12 Modeling and Optimization of Oxide Crystal Growth .......... 213
Svetlana E. Demina, Vladimir V. Kalaev, Alexander
T. Kuliev, Kirill M. Mazaev, and Alexander I. Zhmakin
12.1 Introduction .......................................... 213
12.2 Radiative Heat Transfer (RHT) ......................... 214
12.3 Numerical Model ....................................... 217
12.4 Results and Discussion ................................ 218
12.4.1 Sapphire ....................................... 219
12.4.2 Yttrium Aluminum Garnet ........................ 219
12.4.3 Bismuth Germanate (BGO) ........................ 222
12.5 Conclusions ........................................... 225
Acknowledgments ............................................ 225
References ................................................. 225
13 Advanced Material Development for Inertial Fusion Energy
(IFE) ...................................................... 229
Kathleen Schaffers, Andrew J. Bayramian, Joseph A.
Menapace, Gregory T. Rogowski, Thomas F. Soules,
Christopher A. Stolz, Steve B. Sutton, John B. Tassano,
Peter A. Thelin, Christopher A. Ebbers, John A. Caird,
Christopher P.J. Barty, Mark A. Randies, Charles Porter,
Yiting Fei, and Bruce H.T. Chai
13.1 Introduction .......................................... 229
13.2 Production of Nd:phosphate Laser Glass and KDP
Frequency-Conversion Crystals ......................... 233
13.2.1 Nd: phosphate Laser Glass ...................... 233
13.2.2 KDP Frequency-Conversion Crystals .............. 235
13.3 Yb:S-FAP Crystals ..................................... 235
13.3.1 Crystal Growth ................................. 237
13.3.2 Modeling ....................................... 238
13.3.3 Slab Fabrication ............................... 239
13.4 YCOB Crystals ......................................... 241
13.4.1 YCOB Crystal Growth and Fabrication ............ 242
13.5 Advanced Material Concepts for Power-Plant Designs .... 243
13.6 Summary ............................................... 246
References ................................................. 246
14 Magneto-Optic Garnet Sensor Films: Preparation,
Characterization, Application .............................. 249
Peter Görnert, Andreas Lorenz, Morris Lindner, and
Hendryk Richert
14.1 Introduction .......................................... 249
14.2 Bi-Substituted Garnets ................................ 249
14.3 LPE Deposition and Topological Film Properties ........ 251
14.4 Magnetic and Magneto-Optic Film Properties ............ 253
14.4.1 Magnetic Properties ............................ 253
14.4.2 Magneto-Optic Properties ....................... 254
14.4.3 Reproducibility ................................ 260
14.5 Applications .......................................... 260
14.5.1 Images of Magnetic Field Distributions ......... 261
14.5.2 Quantitative Determination of Magnetic
Fields ......................................... 264
14.6 Conclusions ........................................... 264
Acknowledgments ............................................ 265
References ................................................. 265
15 Growth Technology and Laser Properties of Yb-Doped
Sesquioxides ............................................... 267
Rigo Peters, Klaus Petermann, and Günter Huber
15.1 Introduction .......................................... 267
15.2 Structure and Physical Properties ..................... 267
15.3 Crystal Growth ........................................ 269
15.3.1 Growth Methods with Crucibles .................. 269
15.3.2 Heat-Exchanger Method .......................... 270
15.3.2.1 Crucible .............................. 270
15.3.2.2 Atmosphere ............................ 271
15.3.2.3 Setup ................................. 272
15.3.2.4 Growth Procedure ...................... 273
15.3.2.5 Results ............................... 274
15.4 Spectroscopic Characterization ........................ 276
15.5 Laser Experiments ..................................... 279
15.6 Summary and Outlook ................................... 280
Acknowledgment ............................................. 280
References ................................................. 281
16 Continuous Growth of Alkali-Halides: Physics and
Technology ................................................. 283
Oleg Sidletskiy
16.1 Modern Requirements to Large Alkali-Halide
Crystals .............................................. 283
16.2 Conditions of Steady-State Crystallization in
Conventional Melt-Growth Methods and in Their
Modifications ......................................... 284
16.2.1 Conventional Methods ........................... 284
16.2.2 Melt-Feeding Methods ........................... 285
16.2.3 Growth-Process Control ......................... 286
16.3 Macrodefect Formation in AHC .......................... 287
16.4 Dynamics of Thermal Conditions during Continuous
Growth ................................................ 290
16.5 Advanced Growth-Control Algorithms .................... 292
16.6 Summary ............................................... 295
Acknowledgements ........................................... 296
References ................................................. 296
17 Trends in Scintillation Crystals ........................... 299
Alexander V. Gektin
17.1 Introduction .......................................... 299
17.2 Novel Scintillation Materials ......................... 300
17.3 Scintillation Detectors for Image Visualization and
Growth Techniques for Scintillation Crystals .......... 302
17.4 High Spatial Resolution Scintillation Detectors ....... 305
17.5 Conclusions ........................................... 310
References ................................................. 312
Part IV Crystal Machining ..................................... 313
18 Crystal Machining Using Atmospheric Pressure Plasma ........ 315
Yasuhisa Sano, Kazuya Yamamura, and Kazuto Yamauchi
18.1 Introduction .......................................... 315
18.2 Plasma Chemical Vaporization Machining (PCVM) ......... 315
18.2.1 General Description of PCVM .................... 315
18.2.2 Machining of SiC by PCVM ....................... 316
18.2.3 Beveling of SiC Wafer .......................... 317
18.2.3.1 Background ............................ 317
18.2.3.2 Apparatus and Experimental Method ..... 317
18.2.3.3 Results and Discussion ................ 318
18.2.3.4 Summary of Beveling of SiC Wafer ...... 320
18.2.4 Thinning of SiC Wafer .......................... 320
18.2.4.1 Background ............................ 320
18.2.4.2 Sample Preparation and Experimental
Conditions ............................ 320
18.2.4.3 Results and Discussion ................ 320
18.2.4.4 Summary of Thinning of SiC Wafer ...... 322
18.3 Numerically Controlled Sacrificial Oxidation .......... 322
18.3.1 Basic Concepts ................................. 322
18.3.2 Basic Experiments .............................. 323
18.3.2.1 Experimental Apparatus ................ 323
18.3.2.2 Oxidation Mark ........................ 323
18.3.2.3 Oxidation Rate ........................ 324
18.3.2.4 Surface Roughness ..................... 324
18.3.2.5 Summary of the Basic Experiments ...... 326
18.3.3 Improving Thickness Uniformity of SOI .......... 326
18.3.3.1 Background ............................ 326
18.3.3.2 Procedure for Uniformizing ............ 327
18.3.3.3 Uniformizing of 300mm SOI ............. 327
18.3.3.4 Summary of Improving Thickness
Uniformity of SOI
18.4 Conclusions ........................................... 328
References .................................................... 329
Index ......................................................... 331
|