Crystal growth technology: semiconductors and dielectrics (Weincheim, 2010). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаCrystal growth technology: semiconductors and dielectrics / ed. by P.Capper, P.Rudolph; with foreword by H.J.Schell. - Weincheim: Wiley-VCH, 2010. - xxiv, 342 p.: ill. - Incl. bibl. ref. - Ind.: p.331-342. - ISBN 978-3-527-32593-1
 

Оглавление / Contents
 
Foreword ........................................................ V
Preface ...................................................... XVII
List of Contributors .......................................... XIX

Part I Basic Concepts in Crystal Growth Technology .............. 1

1  Thermodynamic Modeling of Crystal-Growth Processes ........... 3
   Eberhard Buhrig, Manfred Jürisch, Jurgen Korb, and Olf
   Pätzold
   1.1  Introduction ............................................ 3
   1.2  General Approach of Thermodynamic Modeling .............. 4
        1.2.1  Basics ........................................... 4
               1.2.1.1  State Variables for the Description of
                        Equilibrium Conditions .................. 4
               1.2.1.2  The ChemSage Software Package ........... 5
   1.3  Crystal Growth in the System Si-C-O-Ar (Example 1) ...... 6
        1.3.1  Selection of Species ............................. 7
        1.3.2  Test Calculation, Check of Consistency ........... 7
        1.3.3  Calculation of Gibbs Free Energy for Selected
               Reactions ........................................ 8
        1.3.4  Minimization of Gibbs Free Energy of Complex
               Systems .......................................... 9
        1.3.5  The Thermodynamic-Technological Model of the
               Edge-Defined Film-Fed Growth of Silicon ......... 10
   1.4  Crystal Growth of Carbon-Doped GaAs (Example 2) ........ 15
        1.4.1  Components and Species in the System ............ 16
        1.4.2  Results ......................................... 17
        1.4.3  Extended Model .................................. 19
   1.5  Summary and Conclusions ................................ 22
        Acknowledgments ........................................ 23
   References .................................................. 23
2  Modeling of Vapor-Phase Growth of SiC and AlN Bulk
   Crystals .................................................... 25
   Roman A. Talalaev, Alexander S. Segal, Eugene V. Yakovlev,
   and Andrey N. Vorob'ev
   2.1  Introduction ........................................... 25
   2.2  Model Description ...................................... 28
        2.2.1  Quasi-Thermodynamic Model of AlN and AlGaN
               HVPE ............................................ 29
        2.2.2  Modeling of Gas-Phase Nucleation in SiC CVD
               and HTCVD ....................................... 30
   2.3  Results and Discussions ................................ 31
        2.3.1  GaN, AlN, and AlGaN HVPE ........................ 31
        2.3.2  SiC HTCVD ....................................... 35
   2.4  Conclusions ............................................ 38
   References .................................................. 39
3  Advanced Technologies of Crystal Growth from Melt Using
   Vibrational Influence ....................................... 41
   Evgeny V. Zharikov
   3.1  Introduction ........................................... 41
   3.2  Axial Vibrational Control in Crystal Growth ............ 42
   3.3  AVC-Assisted Czochralski Method ........................ 49
   3.4  AVC-Assisted Bridgman Method ........................... 54
   3.5  AVC-Assisted Floating Zone Method ...................... 58
   3.6  Conclusions ............................................ 59
   Acknowledgments ............................................. 60
   References .................................................. 60
   
Part II Semiconductors ......................................... 65
   
4  Numerical Analysis of Selected Processes in Directional
   Solidification of Silicon for Photovoltaics ................. 67
   Koichi Kakimoto
   4.1  Introduction ........................................... 67
   4.2  Directional Solidification Method ...................... 67
   4.3  Crystallization Process ................................ 68
   4.4  Impurity Incorporation in Crystals ..................... 71
   4.5  Summary ................................................ 74
   Acknowledgment .............................................. 74
   References .................................................. 74
5  Characterization and Control of Defects in VCz CaAs
   Crystals Crown without B2O3 Encapsulant ..................... 75
   Frank M. Kiessling
   5.1  Introduction ........................................... 75
   5.2  Retrospection .......................................... 76
   5.3  Crystal Growth without B2O3 Encapsulant ................ 77
   5.4  Inclusions, Precipitates and Dislocations .............. 80
   5.5  Residual Impurities and Special Defect Studies ......... 83
   5.6  Electrical and Optical Properties in SI GaAs ........... 84
   5.7  Boron in SC GaAs ....................................... 89
   5.8  Outlook on TMF-VCz ..................................... 91
   5.9  Conclusions ............................................ 94
   Acknowledgments ............................................. 95
   References .................................................. 95
6  The Growth of Semiconductor Crystals (Ge, GaAs) by the
   Combined Heater Magnet Technology .......................... 101
   Peter Rudolph, Matthias Czupalla, Christiane Frank-
   Rotsch, Frank-Michael Kiessling and Bernd Lux
   6.1  Introduction .......................................... 101
   6.2  Selected Fundamentals ................................. 102
        6.2.1  Convection-Driven Forces ....................... 102
        6.2.2  The Features of Traveling Magnetic Fields ...... 104
   6.3  TMF Generation in Heater-Magnet Modules ............... 106
   6.4  The HMM Design ........................................ 107
   6.5  Numerical Modeling .................................... 109
   6.6  Dummy Measurements .................................... 111
   6.7  Growth Results under TMF .............................. 112
        6.7.1  LEC of GaAs .................................... 112
        6.7.2  VGF of Ge ...................................... 114
   6.8  Conclusions and Outlook ............................... 118
   Acknowledgment ............................................. 118
   References ................................................. 119
7  Manufacturing of Bulk AlN Substrates ....................... 121
   Oleg V. Avdeev, Tatiana Yu. Chemekova, Heikki Helava, 
   Yuri N. Makarov, Evgenii N. Mokhov, Sergei S. Nagalyuk,
   M.G. Ramm, Alexander S. Segal, and Alexander I. Zhmakin
   7.1  Introduction .......................................... 121
        7.1.1  Substrates for Group III Nitride Devices ....... 121
        7.1.2  Growth of Bulk Group III Nitride Crystals ...... 123
        7.1.3  Sublimation Growth of AlN Crystals ............. 125
   7.2  Modeling .............................................. 126
   7.3  Experiment ............................................ 129
        7.3.1  Pregrowth Processing ........................... 129
        7.3.2  Seeding and Initial Growth ..................... 131
        7.3.3  Growth of Bulk AlN Crystals .................... 131
   7.4  Results and Discussion ................................ 131
   7.5  Conclusions ........................................... 133
   Acknowledgments ............................................ 133
   References ................................................. 133
8  Interactions of Dislocations During Epitaxial Growth of
   SiC and GaN ................................................ 137
   Jochen Friedrich, Birgit Kallinger, Patrick Berwian, Elke
   Meissner
   8.1  Introduction .......................................... 137
   8.2  Classification, Nomenclature and Characterization of
        Dislocations in SiC and GaN ........................... 138
   8.3  Conversion of Basal Plane Dislocations During SiC
        Epitaxy ............................................... 141
        8.3.1  Experimental Strategies for Obtaining High
               Conversion Rates ............................... 141
        8.3.2  Driving Force for BPD Conversion ............... 143
   8.4  Reduction of Dislocations During Homoepitaxy of GaN ... 144
        8.4.1  Objectives and Techniques ...................... 144
        8.4.2  Driving Force for Dislocation Reduction ........ 145
   8.5  Conclusions ........................................... 148
   Acknowledgment ............................................. 148
   References ................................................. 148
9  Low-Temperature Growth of Ternary III-V Semiconductor
   Crystals from Antimonide-Based Quaternary Melts ............ 151
   Partha S. Dutta
   9.1  Introduction .......................................... 151
   9.2  Crystal Growth from Quaternary Melts .................. 152
   9.3  Advantages of Quaternary Melts ........................ 152
   9.4  Synthesis and Bulk Crystal Growth ..................... 154
        9.4.1  Growth from Ga1-xInxAs1-ySby Melt ................ 158
               9.4.1.1  Growth of Ga1-xInxAs ................... 158
               9.4.1.2  Growth of GaAs1-ySby ................... 161
        9.4.2  Growth from Ga1-xInxP1-ySby Melt ................. 161
               9.4.2.1  Growth of Ga1-xInxP .................... 161
        9.4.3  Growth from Al1-xGaxAs1-ySby ..................... 163
               9.4.3.1  Growth of Al1-xGaxAs ................... 163
               9.4.3.2  Growth of AlAs1-ySby ................... 164
        9.4.4  Growth from Al1-xInxAs1-ySby ..................... 164
               9.4.4.1  Growth of Al1-xInxAs ................... 165
               9.4.4.2  Growth of AlAs1-ySby ................... 165
        9.4.5  Growth from Al1-xInxP1-ySby Melt ................. 165
               9.4.5.1  Growth of Al1-xInxP .................... 166
        9.4.6  Growth from Al1-xGaxP1-ySby Melt ................. 166
               9.4.6.1  Growth of Al1-xGaxP .................... 166
        9.4.7  Growth from Al1-x-yGaxInySb Melt ................. 167
               9.4.7.1  Growth of Al1-xGaxSb ................... 168
        9.4.8  Growth from InP1-x-yAsxSby Melt .................. 168
               9.4.8.1  Growth of InP1-xAsy .................... 168
        9.4.9  Growth from GaP1-x-yAsxSby Melt ................. 169
               9.4.9.1  Growth of GaP1-yAsy ................... 169
        9.4.10 Growth from AlP1-x-yAsxSby Melt ................. 170
               9.4.10.1 Growth of AlP1-x-yAsy .................. 170
   9.5  Conclusion ............................................ 171
   References ................................................. 172
10 Mercury Cadmium Telluride (MCT) Growth Technology Using
   ACRT and LPE ............................................... 175
   Peter Capper
   10.1 Introduction .......................................... 175
   10.2 Bridgman/ACRT Growth of MCT ........................... 177
        10.2.1 Introduction ................................... 177
        10.2.2 Processing ..................................... 178
        10.2.3 Accelerated Crucible Rotation Technique
               (ACRT) ......................................... 178
               10.2.3.1 Introduction .......................... 178
               10.2.3.2 High-x Material ....................... 179
        10.2.4 Summary ........................................ 182
   10.3 Liquid Phase Epitaxy of MCT ........................... 184
        10.3.1 Introduction ................................... 184
        10.3.2 Growth ......................................... 185
        10.3.3 Summary ........................................ 191
   References ................................................. 192
11 The Use of a Platinum Tube as an Ampoule Support in the
   Bridgman Growth of Bulk CZT Crystals ....................... 195
   Narayanasamy Vijayan, Verónica Carcelén, and Ernesto
   Diéguez
   11.1 Introduction .......................................... 195
   11.2 The Importance of the Solid/Liquid Interface .......... 197
   11.3 Approaches for Crystal Growth Using Ampoule Support ... 199
   11.4 Results and Discussions ............................... 201
   11.5 Conclusions ........................................... 208
   Acknowledgments ............................................ 209
   References ................................................. 209

Part III Dielectrics .......................................... 211

12 Modeling and Optimization of Oxide Crystal Growth .......... 213
   Svetlana E. Demina, Vladimir V. Kalaev, Alexander 
   T. Kuliev, Kirill M. Mazaev, and Alexander I. Zhmakin
   12.1 Introduction .......................................... 213
   12.2 Radiative Heat Transfer (RHT) ......................... 214
   12.3 Numerical Model ....................................... 217
   12.4 Results and Discussion ................................ 218
        12.4.1 Sapphire ....................................... 219
        12.4.2 Yttrium Aluminum Garnet ........................ 219
        12.4.3 Bismuth Germanate (BGO) ........................ 222
   12.5 Conclusions ........................................... 225
   Acknowledgments ............................................ 225
   References ................................................. 225
13 Advanced Material Development for Inertial Fusion Energy
   (IFE) ...................................................... 229
   Kathleen Schaffers, Andrew J. Bayramian, Joseph A. 
   Menapace, Gregory T. Rogowski, Thomas F. Soules, 
   Christopher A. Stolz, Steve B. Sutton, John B. Tassano, 
   Peter A. Thelin, Christopher A. Ebbers, John A. Caird,
   Christopher P.J. Barty, Mark A. Randies, Charles Porter,
   Yiting Fei, and Bruce H.T. Chai
   13.1 Introduction .......................................... 229
   13.2 Production of Nd:phosphate Laser Glass and KDP
        Frequency-Conversion Crystals ......................... 233
        13.2.1 Nd: phosphate Laser Glass ...................... 233
        13.2.2 KDP Frequency-Conversion Crystals .............. 235
   13.3 Yb:S-FAP Crystals ..................................... 235
        13.3.1 Crystal Growth ................................. 237
        13.3.2 Modeling ....................................... 238
        13.3.3 Slab Fabrication ............................... 239
   13.4 YCOB Crystals ......................................... 241
        13.4.1 YCOB Crystal Growth and Fabrication ............ 242
   13.5 Advanced Material Concepts for Power-Plant Designs .... 243
   13.6 Summary ............................................... 246
   References ................................................. 246
14 Magneto-Optic Garnet Sensor Films: Preparation,
   Characterization, Application .............................. 249
   Peter Görnert, Andreas Lorenz, Morris Lindner, and 
   Hendryk Richert
   14.1 Introduction .......................................... 249
   14.2 Bi-Substituted Garnets ................................ 249
   14.3 LPE Deposition and Topological Film Properties ........ 251
   14.4 Magnetic and Magneto-Optic Film Properties ............ 253
        14.4.1 Magnetic Properties ............................ 253
        14.4.2 Magneto-Optic Properties ....................... 254
        14.4.3 Reproducibility ................................ 260
   14.5 Applications .......................................... 260
        14.5.1 Images of Magnetic Field Distributions ......... 261
        14.5.2 Quantitative Determination of Magnetic
               Fields ......................................... 264
   14.6 Conclusions ........................................... 264
   Acknowledgments ............................................ 265
   References ................................................. 265
15 Growth Technology and Laser Properties of Yb-Doped
   Sesquioxides ............................................... 267
   Rigo Peters, Klaus Petermann, and Günter Huber
   15.1 Introduction .......................................... 267
   15.2 Structure and Physical Properties ..................... 267
   15.3 Crystal Growth ........................................ 269
        15.3.1 Growth Methods with Crucibles .................. 269
        15.3.2 Heat-Exchanger Method .......................... 270
               15.3.2.1 Crucible .............................. 270
               15.3.2.2 Atmosphere ............................ 271
               15.3.2.3 Setup ................................. 272
               15.3.2.4 Growth Procedure ...................... 273
               15.3.2.5 Results ............................... 274
   15.4 Spectroscopic Characterization ........................ 276
   15.5 Laser Experiments ..................................... 279
   15.6 Summary and Outlook ................................... 280
   Acknowledgment ............................................. 280
   References ................................................. 281
16 Continuous Growth of Alkali-Halides: Physics and
   Technology ................................................. 283
   Oleg Sidletskiy
   16.1 Modern Requirements to Large Alkali-Halide
        Crystals .............................................. 283
   16.2 Conditions of Steady-State Crystallization in
        Conventional Melt-Growth Methods and in Their
        Modifications ......................................... 284
        16.2.1 Conventional Methods ........................... 284
        16.2.2 Melt-Feeding Methods ........................... 285
        16.2.3 Growth-Process Control ......................... 286
   16.3 Macrodefect Formation in AHC .......................... 287
   16.4 Dynamics of Thermal Conditions during Continuous
        Growth ................................................ 290
   16.5 Advanced Growth-Control Algorithms .................... 292
   16.6 Summary ............................................... 295
   Acknowledgements ........................................... 296
   References ................................................. 296
17 Trends in Scintillation Crystals ........................... 299
   Alexander V. Gektin
   17.1 Introduction .......................................... 299
   17.2 Novel Scintillation Materials ......................... 300
   17.3 Scintillation Detectors for Image Visualization and
        Growth Techniques for Scintillation Crystals .......... 302
   17.4 High Spatial Resolution Scintillation Detectors ....... 305
   17.5 Conclusions ........................................... 310
   References ................................................. 312
   
Part IV Crystal Machining ..................................... 313
   
18 Crystal Machining Using Atmospheric Pressure Plasma ........ 315
   Yasuhisa Sano, Kazuya Yamamura, and Kazuto Yamauchi
   18.1 Introduction .......................................... 315
   18.2 Plasma Chemical Vaporization Machining (PCVM) ......... 315
        18.2.1 General Description of PCVM .................... 315
        18.2.2 Machining of SiC by PCVM ....................... 316
        18.2.3 Beveling of SiC Wafer .......................... 317
               18.2.3.1 Background ............................ 317
               18.2.3.2 Apparatus and Experimental Method ..... 317
               18.2.3.3 Results and Discussion ................ 318
               18.2.3.4 Summary of Beveling of SiC Wafer ...... 320
        18.2.4 Thinning of SiC Wafer .......................... 320
               18.2.4.1 Background ............................ 320
               18.2.4.2 Sample Preparation and Experimental
                        Conditions ............................ 320
               18.2.4.3 Results and Discussion ................ 320
               18.2.4.4 Summary of Thinning of SiC Wafer ...... 322
   18.3 Numerically Controlled Sacrificial Oxidation .......... 322
        18.3.1 Basic Concepts ................................. 322
        18.3.2 Basic Experiments .............................. 323
               18.3.2.1 Experimental Apparatus ................ 323
               18.3.2.2 Oxidation Mark ........................ 323
               18.3.2.3 Oxidation Rate ........................ 324
               18.3.2.4 Surface Roughness ..................... 324
               18.3.2.5 Summary of the Basic Experiments ...... 326
        18.3.3 Improving Thickness Uniformity of SOI .......... 326
               18.3.3.1 Background ............................ 326
               18.3.3.2 Procedure for Uniformizing ............ 327
               18.3.3.3 Uniformizing of 300mm SOI ............. 327
               18.3.3.4 Summary of Improving Thickness
                        Uniformity of SOI
   18.4 Conclusions ........................................... 328
   
References .................................................... 329
   
Index ......................................................... 331


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:22:52 2019. Размер: 26,130 bytes.
Посещение N 1880 c 08.11.2011