Preface ........................................................ XI
List of Contributors ......................................... XIII
1 Concepts in Computational Spectrometry: the Quantum and
Chemistry .................................................... 1
J.F. Ogilvie
1.1 Introduction ............................................ 1
1.2 Quantum Laws, or the Laws of Discreteness ............... 3
1.3 Quantum Theories of a Harmonic Oscillator ............... 5
1.3.1 Matrix Mechanics ................................. 6
1.3.2 Wave Mechanics ................................... 9
1.3.3 Dirac's Operators for Creation and
Destruction ..................................... 15
1.3.4 Discussion of Quantum Theories in Relation to
a Harmonic Oscillator ........................... 17
1.4 Diatomic Molecule as Anharmonic Oscillator ............. 20
1.5 Quantum Mechanics and Molecular Structure .............. 23
1.6 Conclusions ............................................ 33
References .................................................. 35
2 Computational N MR Spectroscopy ............................. 37
Ibon Alkorta and José Elguero
2.1 Introduction ........................................... 37
2.2 NMR Properties ......................................... 37
2.3 Chemical Shifts ........................................ 37
2.4 NICS and Aromaticity ................................... 41
2.5 Spin-Spin Coupling Constants ........................... 45
2.6 Solvent Effects ........................................ 53
2.7 Conclusions ............................................ 54
2.8 The Problem of the Error in Theoretical Calculations
of Chemical Shifts and Coupling Constants .............. 55
References .................................................. 56
3 Calculation of Magnetic Tensors and EPR Spectra for Free
Radicals in Different Environments .......................... 63
Paola Cimino, Frank Neese, and Vincenco Barone
3.1 Introduction ........................................... 63
3.2 The General Model ...................................... 64
3.3 Spin Hamiltonian, g-Tensor, Hyperfine Coupling
Constants, and Zero-Field Splitting .................... 66
3.3.1 The Spin Hamiltonian ............................ 66
3.3.2 Electronic Structure Theory ..................... 67
3.3.3 Additional Terms in the Hamiltonian ............. 69
3.3.4 Linear Response Theory .......................... 72
3.3.5 Linear Response Equations for Spin Hamiltonian
Parameters ...................................... 76
3.3.6 Computational Aspects: Functionals and Basis
Sets ............................................ 82
3.4 Stereoelectronic, Environmental, and Dynamical
Effects ................................................ 84
3.4.1 Structures and Magnetic Parameters .............. 84
3.4.2 Environmental Effects ........................... 86
3.4.3 Short-Time Dynamical Effects .................... 89
3.5 Line Shapes ............................................ 98
3.6 Concluding Remarks .................................... 101
References ................................................. 102
4 Generalization of the Badger Rule Based on the Use of
Adiabatic Vibrational Modes ................................ 105
Elfi Kraka, John Andreas Larsson, and Dieter Cremer
4.1 Introduction .......................................... 105
4.2 Applicability of Badger-Type Relationships in the
Case of Diatomic Molecules ............................ 112
4.3 Dissection of a Polyatomic Molecule into
a Collection of Quasi-Diatomic Molecules: Local
Vibrational Modes ..................................... 118
4.3.1 Localized Vibrational Modes .................... 122
4.3.2 The Adiabatic Internal Coordinate Modes ........ 124
4.3.3 Properties of Adiabatic Internal Coordinate
Modes .......................................... 126
4.3.4 Characterization of Normal Modes in Terms of
AICoMs ......................................... 127
4.3.5 Advantages of AICoMs ........................... 129
4.4 Local Mode Properties Obtained from Experiment ........ 132
4.4.1 Isolated Stretching Modes ...................... 132
4.4.2 Local Mode Frequencies from Overtone
Spectroscopy ................................... 134
4.4.3 Local Mode Information via an Averaging of
Frequencies: Intrinsic Frequencies ............. 135
4.4.4 Compliance Force Constants ..................... 139
4.5 Badger-type Relationships for Polyatomic Molecules .... 140
4.6 Conclusions ........................................... 143
References ................................................. 144
5 The Simulation of UV-Vis Spectroscopy with Computational
Methods .................................................... 151
Benedetto Mennucci
5.1 Introduction .......................................... 151
5.2 Quantum Mechanical Methods ............................ 152
5.3 Modeling Solvent Effects .............................. 157
5.4 Toward the Simulation of UV-Vis Spectra ............... 161
5.5 Some Numerical Examples ............................... 162
5.6 Conclusions and Perspectives .......................... 167
References ................................................. 168
6 Nonadiabatic Calculation of Dipole Moments ................. 173
Francisco M. Fernández and Julián Echave
6.1 Introduction .......................................... 173
6.2 The Molecular Hamiltonian ............................. 174
6.3 Symmetry .............................................. 178
6.4 The Hellmann-Feynman Theorem .......................... 179
6.5 The Born-Oppenheimer Approximation .................... 180
6.6 Interaction between a Molecule and an External
Field ................................................. 182
6.7 Experimental Measurements of Dipole Moments ........... 184
6.8 The Born-Oppenheimer Calculations of Dipole Moments ... J85
6.9 Nonadiabatic Calculations of Dipole Moments ........... 186
6.10 Molecule-Fixed Coordinate System ...................... 192
6.11 Perturbation Theory for the Stark Shift ............... 195
6.12 Conclusions ........................................... 196
References ................................................. 197
7 The Search for Parity Violation in Chiral Molecules ........ 201
Peter Schwerdtfeger
7.1 Introduction .......................................... 201
7.2 Experimental Attempts ................................. 205
7.2.1 Vibration-Rotation Spectroscopy ................ 206
7.2.2 Mossbauer Spectroscopy ......................... 207
7.2.3 NMR Spectroscopy ............................... 208
7.2.4 Electronic Spectroscopy ........................ 209
7.2.5 Other Experiments .............................. 209
7.3 Theoretical Predictions ............................... 211
7.4 Conclusions ........................................... 215
References ................................................. 216
8 Vibrational Circular Dichroism: Time-Domain Approaches ..... 223
Hanju Rhee, Seongeun Yang, and Minhaeng Cho
8.1 Introduction .......................................... 223
8.2 Time-Correlation Function Theory ...................... 224
8.1 Direct Time-Domain Calculation with QM/MM MD
Simulation Methods .................................... 227
8.4 Direct Time-Domain Measurement of VOA Free Induction
Decay Field ........................................... 231
8.4.1 Conventional Differential Measurement Method ... 231
8.4.2 Femtosecond Spectral Interferometric
Approach ....................................... 232
8.4.2.1 Cross-Polarization Detection
Configuration ......................... 232
8.4.2.2 Fourier Transform Spectral
Interferometry ........................ 234
8.4.2.3 Vibrational OA-FID Measurement ........ 237
8.5 Summary and a Few Concluding Remarks .................. 238
References ................................................. 239
9 Electronic Circular Dichroism .............................. 241
Lorenzo Di Bari and Gennaro Pescitelli
9.1 Introduction .......................................... 241
9.2 Molecular Anatomy ..................................... 243
9.3 Conformational Manifolds and Molecular Structure ...... 246
9.4 Hybrid Approaches ..................................... 247
9.4.1 Coupled Oscillators and the DeVoe Method ....... 248
9.4.2 The Matrix Method .............................. 251
9.4.3 Applications ................................... 252
9.5 The QM Approach ....................................... 256
9.5.1 Assignments of Absolute Configurations ......... 261
9.5.1.1 The Solid-State ECD TDDFT Method ...... 266
9.5.2 Interpretations of ECD Spectra ................. 268
9.5.3 Other Applications ............................. 270
9.6 Conclusions and Perspectives .......................... 271
References ................................................. 272
10 Computational Dielectric Spectroscopy of Charged,
Dipolar Systems ............................................ 279
Christian Schröder and Othmar Steinhauser
10.1 Methods ............................................... 279
10.1.1 Dielectric Field Equation ...................... 279
10.1.2 Molecular Resolution of the Total Collective
Dipole Moment .................................. 282
10.1.3 Computing the Generalized Dielectric Constant
in Equilibrium ................................. 286
10.1.4 Finite System Electrostatics ................... 294
10.2 Applications and Experiments .......................... 299
10.2.1 Solvated Biomolecules .......................... 303
10.2.1.1 Peptides .............................. 304
10.2.1.2 Proteins .............................. 305
10.2.1.3 DNA ................................... 309
10.2.1.4 Biological Cells ...................... 310
10.2.2 Molecular Ionic Liquids ........................ 311
10.2.2.1 Conductivity and Dielectric
Conductivity .......................... 312
10.2.2.2 Dielectric Permittivity ............... 314
10.2.2.3 Generalized Dielectric Constant ....... 315
10.3 Summary and Outlook ................................... 317
References ................................................. 318
11 Computational Spectroscopy in Environmental Chemistry ...... 323
James D. Kubicki and Karl T. Mueller
11.1 Introduction .......................................... 323
11.1.1 Need for Computational Spectroscopy ............ 323
11.1.1.1 Speciation ............................ 323
11.1.1.2 Surface Reactions ..................... 324
11.1.2 Types of Spectra Calculated .................... 325
11.1.2.1 IR/Raman .............................. 325
11.1.2.2 NMR ................................... 328
11.1.2.3 EXAFS + CTR + XSW ..................... 329
11.1.2.4 QENS and INS .......................... 330
11.2 Methods ............................................... 331
11.2.1 Model Building ................................. 331
11.2.2 Selecting a Methodology ........................ 333
11.3 Examples ............................................. 334
11.3.1 IR/Raman Phosphate on Goethite ................. 334
11.3.2 Solution-State NMR of Al-Organic Complexes ..... 337
11.3.3 Solid-State NMR of Phosphate Binding on
Alumina ........................................ 339
11.3.4 Solid-State NMR of Aluminum Species at
Mineral and Glass Surfaces ..................... 341
11.3.5 Water and Zn(II) on Ti02 ....................... 341
11.3.6 Water Dynamics on Ti02 and Sn02 ................ 343
11.4 Summary and Future .................................... 345
References ................................................. 346
12 Comparison of Calculated and Observed Vibrational
Frequencies of New Molecules from an Experimental
Perspective ................................................ 353
Lester Andrews
12.1 Introduction .......................................... 353
12.2 Experimental and Theoretical Methods .................. 353
12.2.1 The Li02 Ionic Molecule ........................ 354
12.3 Aluminum and Hydrogen: First Preparation of
Dibridged Dialane, Al2H6 .............................. 356
12.4 Titanium and Boron Trifluoride Give the Borylene
FB=TiF2 ............................................... 359
12.5 Ti and CH3F Form the Agostic Methylidene Product
CH2=TiHF .............................................. 360
12.6 Zr and CH4 Form the Agostic Methylidene Product
CH2=ZrH2 .............................................. 362
12.7 Mo and CHCl3 Form the Methylidyne CHeeMoC13 ........... 364
12.8 Tungsten and Hydrogen Produce the WH4(H2)4
Supercomplex .......................................... 366
12.9 Pt and ССl4 Form the Carbene CCl2=PtCl2 ................ 367
12.10 Th and CH4 Yield the Agostic Methylidene Product
CH2=ThH2 .............................................. 371
12.11 U and CHF3 Produce the Methylidyne CH=UF3 ............ 371
References ................................................. 374
13 Astronomical Molecular Spectroscopy ........................ 377
Timothy W. Schmidt
13.1 The Giants' Shoulders ................................. 377
13.2 The First Spectroscopists and Seeds of Quantum
Theory ................................................ 379
13.3 Small Molecules ....................................... 383
13.3.1 CH, CN, CO, CO+ ................................ 383
13.3.2 Dicarbon: C2 ................................... 385
13.3.3 The Carbon Trimer: C3 .......................... 387
13.3.4 Radioastronomy ................................. 389
13.4 The Diffuse Interstellar Bands ........................ 390
13.4.1 The Hump ....................................... 392
13.5 The Red Rectangle, HD44179 ............................ 392
13.6 The Aromatic Infrared Bands ........................... 394
13.7 The Holy Grail ........................................ 394
References ................................................. 395
Index ......................................................... 399
|