Computational spectroscopy: methods, experiments and applications / ed. by J.Grunenberg (Weincheim, 2010). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаComputational spectroscopy: methods, experiments and applications / ed. by J.Grunenberg. - Weincheim: Wiley-VCH, 2010. - xv, 416 p.: ill. - Incl. bibl. ref. - Ind.: p.399-416. - ISBN 3-527-32649-9
 

Оглавление / Contents
 
Preface ........................................................ XI
List of Contributors ......................................... XIII

1  Concepts in Computational Spectrometry: the Quantum and
   Chemistry .................................................... 1
   J.F. Ogilvie
   1.1  Introduction ............................................ 1
   1.2  Quantum Laws, or the Laws of Discreteness ............... 3
   1.3  Quantum Theories of a Harmonic Oscillator ............... 5
        1.3.1  Matrix Mechanics ................................. 6
        1.3.2  Wave Mechanics ................................... 9
        1.3.3  Dirac's Operators for Creation and
               Destruction ..................................... 15
        1.3.4  Discussion of Quantum Theories in Relation to
               a Harmonic Oscillator ........................... 17
   1.4  Diatomic Molecule as Anharmonic Oscillator ............. 20
   1.5  Quantum Mechanics and Molecular Structure .............. 23
   1.6  Conclusions ............................................ 33
   References .................................................. 35
2  Computational N MR Spectroscopy ............................. 37
   Ibon Alkorta and José Elguero
   2.1  Introduction ........................................... 37
   2.2  NMR Properties ......................................... 37
   2.3  Chemical Shifts ........................................ 37
   2.4  NICS and Aromaticity ................................... 41
   2.5  Spin-Spin Coupling Constants ........................... 45
   2.6  Solvent Effects ........................................ 53
   2.7  Conclusions ............................................ 54
   2.8  The Problem of the Error in Theoretical Calculations
        of Chemical Shifts and Coupling Constants .............. 55
   References .................................................. 56
3  Calculation of Magnetic Tensors and EPR Spectra for Free
   Radicals in Different Environments .......................... 63
   Paola Cimino, Frank Neese, and Vincenco Barone
   3.1  Introduction ........................................... 63
   3.2  The General Model ...................................... 64
   3.3  Spin Hamiltonian, g-Tensor, Hyperfine Coupling
        Constants, and Zero-Field Splitting .................... 66
        3.3.1  The Spin Hamiltonian ............................ 66
        3.3.2  Electronic Structure Theory ..................... 67
        3.3.3  Additional Terms in the Hamiltonian ............. 69
        3.3.4  Linear Response Theory .......................... 72
        3.3.5  Linear Response Equations for Spin Hamiltonian
               Parameters ...................................... 76
        3.3.6  Computational Aspects: Functionals and Basis
               Sets ............................................ 82
   3.4  Stereoelectronic, Environmental, and Dynamical
        Effects ................................................ 84
        3.4.1  Structures and Magnetic Parameters .............. 84
        3.4.2  Environmental Effects ........................... 86
        3.4.3  Short-Time Dynamical Effects .................... 89
   3.5  Line Shapes ............................................ 98
   3.6  Concluding Remarks .................................... 101
   References ................................................. 102
4  Generalization of the Badger Rule Based on the Use of
   Adiabatic Vibrational Modes ................................ 105
   Elfi Kraka, John Andreas Larsson, and Dieter Cremer
   4.1  Introduction .......................................... 105
   4.2  Applicability of Badger-Type Relationships in the
        Case of Diatomic Molecules ............................ 112
   4.3  Dissection of a Polyatomic Molecule into
        a Collection of Quasi-Diatomic Molecules: Local
        Vibrational Modes ..................................... 118
        4.3.1  Localized Vibrational Modes .................... 122
        4.3.2  The Adiabatic Internal Coordinate Modes ........ 124
        4.3.3  Properties of Adiabatic Internal Coordinate
               Modes .......................................... 126
        4.3.4  Characterization of Normal Modes in Terms of
               AICoMs ......................................... 127
        4.3.5  Advantages of AICoMs ........................... 129
   4.4  Local Mode Properties Obtained from Experiment ........ 132
        4.4.1  Isolated Stretching Modes ...................... 132
        4.4.2  Local Mode Frequencies from Overtone
               Spectroscopy ................................... 134
        4.4.3  Local Mode Information via an Averaging of
               Frequencies: Intrinsic Frequencies ............. 135
        4.4.4  Compliance Force Constants ..................... 139
   4.5  Badger-type Relationships for Polyatomic Molecules .... 140
   4.6  Conclusions ........................................... 143
   References ................................................. 144
5  The Simulation of UV-Vis Spectroscopy with Computational
   Methods .................................................... 151
   Benedetto Mennucci
   5.1  Introduction .......................................... 151
   5.2  Quantum Mechanical Methods ............................ 152
   5.3  Modeling Solvent Effects .............................. 157
   5.4  Toward the Simulation of UV-Vis Spectra ............... 161
   5.5  Some Numerical Examples ............................... 162
   5.6  Conclusions and Perspectives .......................... 167
   References ................................................. 168
6  Nonadiabatic Calculation of Dipole Moments ................. 173
   Francisco M. Fernández and Julián Echave
   6.1  Introduction .......................................... 173
   6.2  The Molecular Hamiltonian ............................. 174
   6.3  Symmetry .............................................. 178
   6.4  The Hellmann-Feynman Theorem .......................... 179
   6.5  The Born-Oppenheimer Approximation .................... 180
   6.6  Interaction between a Molecule and an External
        Field ................................................. 182
   6.7  Experimental Measurements of Dipole Moments ........... 184
   6.8  The Born-Oppenheimer Calculations of Dipole Moments ... J85
   6.9  Nonadiabatic Calculations of Dipole Moments ........... 186
   6.10 Molecule-Fixed Coordinate System ...................... 192
   6.11 Perturbation Theory for the Stark Shift ............... 195
   6.12 Conclusions ........................................... 196
   References ................................................. 197
7  The Search for Parity Violation in Chiral Molecules ........ 201
   Peter Schwerdtfeger
   7.1  Introduction .......................................... 201
   7.2  Experimental Attempts ................................. 205
        7.2.1  Vibration-Rotation Spectroscopy ................ 206
        7.2.2  Mossbauer Spectroscopy ......................... 207
        7.2.3  NMR Spectroscopy ............................... 208
        7.2.4  Electronic Spectroscopy ........................ 209
        7.2.5  Other Experiments .............................. 209
   7.3  Theoretical Predictions ............................... 211
   7.4  Conclusions ........................................... 215
   References ................................................. 216
8  Vibrational Circular Dichroism: Time-Domain Approaches ..... 223
   Hanju Rhee, Seongeun Yang, and Minhaeng Cho
   8.1  Introduction .......................................... 223
   8.2  Time-Correlation Function Theory ...................... 224
   8.1  Direct Time-Domain Calculation with QM/MM MD
        Simulation Methods .................................... 227
   8.4  Direct Time-Domain Measurement of VOA Free Induction
        Decay Field ........................................... 231
        8.4.1  Conventional Differential Measurement Method ... 231
        8.4.2  Femtosecond Spectral Interferometric
               Approach ....................................... 232
               8.4.2.1  Cross-Polarization Detection
                        Configuration ......................... 232
               8.4.2.2  Fourier Transform Spectral
                        Interferometry ........................ 234
               8.4.2.3  Vibrational OA-FID Measurement ........ 237
   8.5  Summary and a Few Concluding Remarks .................. 238
   References ................................................. 239
9  Electronic Circular Dichroism .............................. 241
   Lorenzo Di Bari and Gennaro Pescitelli
   9.1  Introduction .......................................... 241
   9.2  Molecular Anatomy ..................................... 243
   9.3  Conformational Manifolds and Molecular Structure ...... 246
   9.4  Hybrid Approaches ..................................... 247
        9.4.1  Coupled Oscillators and the DeVoe Method ....... 248
        9.4.2  The Matrix Method .............................. 251
        9.4.3  Applications ................................... 252
   9.5  The QM Approach ....................................... 256
        9.5.1  Assignments of Absolute Configurations ......... 261
               9.5.1.1  The Solid-State ECD TDDFT Method ...... 266
        9.5.2  Interpretations of ECD Spectra ................. 268
        9.5.3  Other Applications ............................. 270
   9.6  Conclusions and Perspectives .......................... 271
   References ................................................. 272
10 Computational Dielectric Spectroscopy of Charged,
   Dipolar Systems ............................................ 279
   Christian Schröder and Othmar Steinhauser
   10.1 Methods ............................................... 279
        10.1.1 Dielectric Field Equation ...................... 279
        10.1.2 Molecular Resolution of the Total Collective
               Dipole Moment .................................. 282
        10.1.3 Computing the Generalized Dielectric Constant
               in Equilibrium ................................. 286
        10.1.4 Finite System Electrostatics ................... 294
   10.2 Applications and Experiments .......................... 299
        10.2.1 Solvated Biomolecules .......................... 303
               10.2.1.1 Peptides .............................. 304
               10.2.1.2 Proteins .............................. 305
               10.2.1.3 DNA ................................... 309
               10.2.1.4 Biological Cells ...................... 310
        10.2.2 Molecular Ionic Liquids ........................ 311
               10.2.2.1 Conductivity and Dielectric
                        Conductivity .......................... 312
               10.2.2.2 Dielectric Permittivity ............... 314
               10.2.2.3 Generalized Dielectric Constant ....... 315
   10.3 Summary and Outlook ................................... 317
   References ................................................. 318
11 Computational Spectroscopy in Environmental Chemistry ...... 323
   James D. Kubicki and Karl T. Mueller
   11.1 Introduction .......................................... 323
        11.1.1 Need for Computational Spectroscopy ............ 323
               11.1.1.1 Speciation ............................ 323
               11.1.1.2 Surface Reactions ..................... 324
        11.1.2 Types of Spectra Calculated .................... 325
               11.1.2.1 IR/Raman .............................. 325
               11.1.2.2 NMR ................................... 328
               11.1.2.3 EXAFS + CTR + XSW ..................... 329
               11.1.2.4 QENS and INS .......................... 330
   11.2 Methods ............................................... 331
        11.2.1 Model Building ................................. 331
        11.2.2 Selecting a Methodology ........................ 333
   11.3  Examples ............................................. 334
        11.3.1 IR/Raman Phosphate on Goethite ................. 334
        11.3.2 Solution-State NMR of Al-Organic Complexes ..... 337
        11.3.3 Solid-State NMR of Phosphate Binding on
               Alumina ........................................ 339
        11.3.4 Solid-State NMR of Aluminum Species at
               Mineral and Glass Surfaces ..................... 341
        11.3.5 Water and Zn(II) on Ti02 ....................... 341
        11.3.6 Water Dynamics on Ti02 and Sn02 ................ 343
   11.4 Summary and Future .................................... 345
   References ................................................. 346
12 Comparison of Calculated and Observed Vibrational
   Frequencies of New Molecules from an Experimental
   Perspective ................................................ 353
   Lester Andrews
   12.1 Introduction .......................................... 353
   12.2 Experimental and Theoretical Methods .................. 353
        12.2.1 The Li02 Ionic Molecule ........................ 354
   12.3 Aluminum and Hydrogen: First Preparation of
        Dibridged Dialane, Al2H6 .............................. 356
   12.4 Titanium and Boron Trifluoride Give the Borylene
        FB=TiF2 ............................................... 359
   12.5 Ti and CH3F Form the Agostic Methylidene Product
        CH2=TiHF .............................................. 360
   12.6 Zr and CH4 Form the Agostic Methylidene Product
        CH2=ZrH2 .............................................. 362
   12.7 Mo and CHCl3 Form the Methylidyne CHeeMoC13 ........... 364
   12.8 Tungsten and Hydrogen Produce the WH4(H2)4
        Supercomplex .......................................... 366
   12.9 Pt and ССl4 Form the Carbene CCl2=PtCl2 ................ 367
   12.10 Th and CH4 Yield the Agostic Methylidene Product
        CH2=ThH2 .............................................. 371
   12.11 U and CHF3 Produce the Methylidyne CH=UF3 ............ 371
   References ................................................. 374
13 Astronomical Molecular Spectroscopy ........................ 377
   Timothy W. Schmidt
   13.1 The Giants' Shoulders ................................. 377
   13.2 The First Spectroscopists and Seeds of Quantum
        Theory ................................................ 379
   13.3 Small Molecules ....................................... 383
        13.3.1 CH, CN, CO, CO+ ................................ 383
        13.3.2 Dicarbon: C2 ................................... 385
        13.3.3 The Carbon Trimer: C3 .......................... 387
        13.3.4 Radioastronomy ................................. 389
   13.4 The Diffuse Interstellar Bands ........................ 390
        13.4.1 The Hump ....................................... 392
   13.5 The Red Rectangle, HD44179 ............................ 392
   13.6 The Aromatic Infrared Bands ........................... 394
   13.7 The Holy Grail ........................................ 394
   References ................................................. 395

Index ......................................................... 399


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:22:52 2019. Размер: 19,727 bytes.
Посещение N 1848 c 08.11.2011