Preface ....................................................... XV
List of Contributors .......................................... XIX
Part One
Overview of Synthesis, Characterization, and Applications
in Biomedicine .................................................. 1
1 Carbon Nanomaterials: Synthetic Approaches ................... 3
Jean-Philippe Tessonnier
1.1 Introduction ............................................ 3
1.2 General Concepts on the Synthesis of Carbon
(Nano-)Materials ........................................ 4
1.2.1 Uncatalyzed Synthesis of Carbon
(Nano-)Materials ................................. 4
1.2.2 Catalyzed Synthesis of Carbon (Nano-)Materials ... 5
1.3 Synthesis from Solid Precursors ......................... 6
1.3.1 Nanodiamonds ..................................... 6
1.3.1.1 Turning Graphite into Diamond ........... 7
1.3.1.2 Explosive Detonation Synthesis .......... 7
1.3.2 Fullerenes, Nanohorns, Single- and Multi-Wall
Carbon Nanotubes ................................. 9
1.4 Catalytic Chemical Vapor Deposition .................... 10
1.4.1 Definitions ..................................... 10
1.4.2 Mechanistic Aspects ............................. 12
1.4.3 Single- and Multi-Wall Carbon Nanotubes ......... 14
1.4.3.1 Floating Catalyst CCVD ................. 15
1.4.3.2 Immobilized Catalyst CCVD .............. 16
1.4.4 Aligned Carbon Nanotubes ........................ 17
1.4.5 Carbon Nanotubes Synthesized from
Biocompatible Catalysts ......................... 18
1.4.6 Metal-and РАН-Induced Toxicity of Carbon
Nanotubes ....................................... 19
1.5 Purification Techniques ................................ 20
1.6 Importance of Defects and Curvature for Further
Functionalization ...................................... 22
1.7 Functionalization: Creating Anchoring Points for
Bioactive Molecules .................................... 23
1.7.1 Functionalization by Oxidation .................. 24
1.7.2 Functionalization by Coupling Reactions ......... 25
1.7.3 Noncovalent Functionalization ................... 26
1.8 Conclusion and Outlook ................................. 26
References ............................................. 26
2 Nanocarbons: Characterization Tools ......................... 35
Dang Sheng Su
2.1 Introduction ........................................... 35
2.2 Diffraction Techniques ................................. 36
2.3 Imaging ................................................ 37
2.3.1 Electron Microscopy ............................. 37
2.3.1.1 Electron-Specimen Interactions ......... 38
2.3.1.2 Scanning Electron Microscopy ........... 39
2.3.1.3 Transmission Electron Microscopy ....... 41
2.3.1.4 Scanning Transmission Electron
Microscopy ............................. 49
2.3.2 Scanning Probe Microscopy ....................... 49
2.3.2.1 Scanning Tunneling Microscopy .......... 49
2.3.2.2 Atomic Force Microscopy ................ 52
2.4 Spectroscopy ........................................... 53
2.4.1 Energy-Dispersive X-Ray Spectroscopy ............ 53
2.4.2 Electron Energy-Loss Spectroscopy ............... 55
2.4.3 X-Ray Absorption Spectroscopy ................... 57
2.4.4 X-Ray Photoelectron Spectroscopy ................ 58
2.4.5 Raman Spectroscopy .............................. 62
2.4.6 Infrared Spectroscopy ........................... 64
2.5 Summary ................................................ 66
References ............................................. 66
3 Synthesis, Characterization, and Biomedical Applications
of Craphene ................................................. 69
Albert Dato, Velimir Radmilovic and Michael Frenklach
3.1 Introduction ........................................... 69
3.2 Synthesis of Graphene .................................. 70
3.2.1 Chemical Exfoliation ............................ 71
3.2.2 Epitaxial Growth ................................ 71
3.2.3 Substrate-Free Gas-Phase Synthesis .............. 72
3.2.4 Chemical Vapor Deposition ....................... 72
3.2.5 Arc Discharge of Graphite Electrodes ............ 72
3.2.6 Liquid-Phase Production ......................... 72
3.3 Characterization of Graphene ........................... 73
3.3.1 Raman Spectroscopy .............................. 73
3.3.2 Transmission Electron Microscopy ................ 75
3.3.3 Electron Diffraction ............................ 75
3.3.4 Electron Energy Loss Spectroscopy ............... 76
3.3.5 Elemental Analysis .............................. 77
3.4 Biomedical Applications of Graphene .................... 78
3.4.1 Biocompatible Graphene Paper .................... 79
3.4.2 Drug Delivery ................................... 79
3.4.3 Biodevices ...................................... 81
3.4.4 Imaging of Soft Materials ....................... 82
3.5 Conclusions ............................................ 83
References ............................................. 83
4 Carbon Nanohorns and Their Biomedical Applications
Shuyun Zhu and Guobao Xu
4.1 Introduction ........................................... 87
4.2 Structure and Properties ............................... 88
4.3 Functionalization ...................................... 90
4.3.1 Covalent Functionalization ...................... 91
4.3.2 Noncovalent Functionalization ................... 92
4.4 Biomedical Applications ................................ 93
4.4.1 Toxicity Assessment of SWCNHs ................... 95
4.4.2 SWCNHs Used in Drug-Delivery Systems ............ 95
4.4.3 SWCNHs Used in Magnetic Resonance Analysis ..... 100
4.4.4 Biosensing Applications of SWCNHs .............. 101
4.5 Conclusions ........................................... 103
Acknowledgments ....................................... 104
References ............................................ 104
5 Bio-Inspired Magnetic Carbon Materials ..................... 111
Elby Titus, Jose Gracio, Duncan P. Fagg, Manjo K. Singh
an Antonio С.М. Sousa
5.1 Introduction .......................................... 111
5.2 Allotropic Forms of Carbon ............................ 112
5.3 Magnetism in Diamond .................................. 113
5.3.1 Biomedical Applications of Magnetic Diamond ..... 113
5.4 Magnetism in Graphite ................................. 115
5.4.1 Biomedical Applications of Magnetic Graphite ... 116
5.5 Magnetism in Carbon Nanotubes / Fullerenes ............ 117
5.5.1 Biomedical Applications of Magnetic Carbon
Nanotubes / Fullerenes ......................... 120
5.6 Magnetism in Graphene ................................. 124
5.6.1 Biomedical Applications of Magnetic Graphene ... 125
5.7 Conclusion ............................................ 126
References ................................................. 126
6 Multi-Walled Carbon Nanotubes for Drug Delivery ............ 133
Nicole Levi-Polyachenko
6.1 Introduction .......................................... 133
6.2 Gene Therapy .......................................... 138
6.3 Antibacterial Therapy ................................. 140
6.4 Wound Healing ......................................... 142
6.5 Chemotherapy .......................................... 145
6.5.1 Hyperthermic Drug Delivery Using CNTs .......... 146
6.5.2 Drug Transport Using CNTs ...................... 150
6.6 Summary and Future Perspectives ....................... 154
References ................................................. 155
7 Carbon Nanotube-Based Three-Dimensional Matrices
for Tissue Engineering ..................................... 161
Izabela Firkowska and Michael Giersig
7.1 Introduction .......................................... 161
7.2 Carbon Nanotubes ...................................... 162
7.3 Carbon Nanotubes for Matrix Enhancement ............... 164
7.4 Cellular Responses to CNT-Based Matrices .............. 166
7.5 CNT Engineering into Three-Dimensional Matrices ....... 166
7.5.1 Vertically Aligned CNT-Based Matrices .......... 166
7.5.2 Three-Dimensional Cavity Network of
Interconnected Nanotubes ....................... 170
7.5.3 Freestanding MWNT-Based Matrix ................. 175
7.5.3.1 Modification of the MWNT-Based
Matrix Surface with Bioactive
Calcium Phosphate Nanoparticles ....... 178
7.6 Summary ............................................... 180
References ................................................. 182
8 Electrochemical Biosensors Based on Carbon Nanotubes ....... 187
Jonathan C. Claussen, Jin Shi, Alfred R. Diggs,
D. Marshall Porterfeld and Timothy S. Fisher
8.1 Introduction .......................................... 187
8.2 CNT Properties ........................................ 188
8.2.1 Mechanical ..................................... 188
8.2.2 Electrical ..................................... 188
8.2.3 Chemical / Electrochemical ..................... 189
8.3 Electrochemical Biosensing ............................ 190
8.4 CNT-Based Electrode Fabrication ....................... 190
8.4.1 Adsorption ..................................... 190
8.4.2 Covalent Bonding ............................... 192
8.4.3 Polymer Entrapment ............................. 192
8.4.4 Aligned Arrays ................................. 195
8.4.4.1 Nanoelectrodes ........................ 197
8.4.5 Hybrid (CNT / Metal Nanoparticle) Electrodes ... 197
8.5 Applications .......................................... 199
8.5.1 Nonenzymatic Biosensing ........................ 199
8.5.1.1 Nicotinamide Adenine Dinucleotide
(NADH) ................................ 199
8.5.1.2 Homocysteine .......................... 201
8.5.1.3 Dopamine .............................. 202
8.5.1.4 Indole Acetic Acid (IAA) .............. 202
8.5.2 Enzymatic Biosensing ........................... 203
8.5.2.1 Glucose ............................... 203
8.5.2.2 Glutamate ............................. 205
8.5.2.3 Ethanol ............................... 207
8.6 Conclusions ........................................... 209
References ................................................. 210
9 Single-Walled Carbon Nanotube Biosensors ................... 217
Jeong-O Lee and Hye-Mi So
9.1 Introduction .......................................... 217
9.2 The Sensing Mechanisms of Nanotube Biosensors ......... 218
9.3 The Immobilization of Biomolecules on SWNTs ........... 221
9.3.1 Covalent Binding ............................... 221
9.3.2 Noncovalent Binding ............................ 222
9.3.3 Other Immobilization Methods (Metal
Particles, etc.) ............................... 223
9.4 Various Receptors for Nanotube Biosensors ............. 224
9.4.1 Aptamers ....................................... 224
9.4.2 Fragment Antibodies ............................ 227
9.4.3 Enzymes and Proteins ........................... 229
9.4.4 Other Receptor Types ........................... 230
9.5 The Application of Nanotube Biosensors to Pathogen
Detection ............................................. 231
9.6 The Future of Nanotube Biosensors ..................... 234
References ................................................. 235
10 Environmental Impact of Fullerenes ......................... 239
Naohide Shinohara
10.1 Introduction .......................................... 239
10.2 Methods Used to Prepare Fullerene Suspensions ......... 239
10.2.1 Solubility of Fullerene ........................ 239
10.2.2 Aqueous Suspensions of Fullerenes .............. 246
10.2.3 Toxicity of Aqueous Fullerene Suspensions as
a Factor of the Dispersion Method .............. 246
10.3 Toxicological Data Relating to Fullerenes ............. 247
10.3.1 Toxicological Effects of C60 on Fish ........... 247
10.3.2 Toxicological Effects of C60 on
Invertebrates .................................. 250
10.3.3 Toxicological Effects of C60 on Algae .......... 251
10.3.4 Toxicological Effects of C60 on Bacteria and
Soil Microbes
10.3.5 Toxicological Effects of C60 on Other
Organisms ...................................... 254
10.4 Possible Emission Sources of C60 ...................... 254
10.5 The Environmental Fate of C60 ......................... 262
10.6 Fullerenes in the Environment ......................... 265
10.7 Conclusion ............................................ 265
References ................................................. 266
11 Computational Tools for the Biomedical Application of
Carbon Nanomaterials ....................................... 271
Leela Rakesh
11.1 Introduction .......................................... 271
11.2 Simulation Methods .................................... 278
11.2.1 Background ..................................... 278
11.2.2 Molecular Modeling ............................. 280
11.3 Results and Discussions ............................... 282
11.3.1 Branched PEGylated DPCC Functionalized PTX
Physical Loading on SWNTs ...................... 287
11.3.2 Interaction of Irinotecan-co-br-PEG-DPCC-
unco-SWNT and with ssDNA (Adenine-Thymine
(AT)) .......................................... 292
11.3.3 Interaction of Nanotube with 20-Base Pair
Guanine-Thymine -ssDNA in the Presence of
Calcitriol ..................................... 296
11.4 Future Perspectives ................................... 298
11.5 Executive Summary ..................................... 300
Acknowledgments ............................................ 301
References ................................................. 301
Part Two
Overview of Applications in Cancer ............................ 307
12 Carbon Nanotubes for Cancer Therapy ........................ 309
William H. Gmeiner
12.1 Introduction .......................................... 309
12.1.1 Limitations of Current Therapy Options ......... 309
12.1.2 Developing Nanomaterials for Cancer
Treatment ...................................... 310
12.1.3 CNTs: Physical Properties, Manufacture, and
Chemical Modifications ......................... 311
12.2 Hyperthermia for Cancer Treatment ..................... 312
12.2.1 Current Ablative Technologies .................. 315
12.2.2 Use of CNTs for Hyperthermia Treatment ......... 316
12.3 CNTs for Drug Delivery ................................ 320
12.3.1 Localization of CNTs to Malignant Tissues ...... 321
12.3.2 Drug Delivery Using CNTs ....................... 322
12.4 Imaging Using CNTs .................................... 323
12.5 CNT-Related Toxicity .................................. 324
12.6 Summary and Future Perspective ........................ 325
Acknowledgments ............................................ 326
Abbreviations .............................................. 326
References ................................................. 327
13 Cancer Treatment with Carbon Nanotubes, Using Thermal
Ablation or Association with Anticancer Agents ............. 333
Roger G. Harrison, Luís F.F. Neves, Whitney M. Prickett
and David Luu
13.1 Introduction .......................................... 333
13.2 Use of Nanotubes as Heated Particles .................. 334
13.3 Use of Anticancer Agents Associated with Nanotubes .... 338
13.4 Summary ............................................... 343
13.5 Future Perspective .................................... 344
Acknowledgments ............................................ 345
References ................................................. 345
14 Carbon Nanotubes for Targeted Cancer Therapy ............... 349
Reema Zeineldin
14.1 Introduction .......................................... 349
14.2 Cancer ................................................ 350
14.3 Conventional Cancer Chemotherapy versus Nanocarrier-
Mediated Drug Delivery ................................ 352
14.3.1 Challenges with Chemical Compounds as
Therapeutic Agents ............................. 352
14.3.2 Advantages of Nanocarriers as Drug-Delivery
Vehicles ....................................... 352
14.4 Carbon Nanotubes as Drug-Delivery Vehicles ............ 353
14.5 Cellular Uptake of CNTs ............................... 354
14.6 Functionalization of CNTs with Polyethylene Glycol .... 355
14.7 Targeting of Cancers .................................. 357
14.7.1 Passive Targeting .............................. 357
14.7.2 Active Targeting ............................... 358
14.7.3 Trafficking of Targeted Drug-Delivery
Vehicles ....................................... 358
14.8 Targeted Cancer Therapy Employing CNTs and
a Critique of Current Studies ......................... 359
14.8.1 erbB Family Members ............................ 360
14.8.2 Folate Receptor α .............................. 363
14.8.3 Biotin Receptor ................................ 365
14.8.4 Integrins ...................................... 366
14.8.5 Markers for Lymphomas or Leukemias ............. 367
14.8.6 Disialoganglioside (GD2) ....................... 368
14.9 Summary and Future Perspective ........................ 368
Acknowledgments ............................................ 371
References ................................................. 371
15 Application of Carbon Nanotubes to Brain Tumor Therapy ..... 381
Dongchang Zhao and Behnam Badie
15.1 Introduction .......................................... 381
15.2 The Current Challenge of Brain Tumor Therapy .......... 382
15.2.1 Current Status of Clinical Practice in Brain
Tumor Therapy .................................. 382
15.2.2 The Progress of Investigational Therapies for
Brain Tumors ................................... 382
15.2.2.1 Targeted Molecular Therapy ............ 382
15.2.2.2 Anti-Angiogenic Therapy ............... 383
15.2.2.3 Immunotherapy ......................... 383
15.2.2.4 Gene Therapy .......................... 384
15.3 The Characteristics of CNTs for Biological
Applications .......................................... 385
15.3.1 Single-Walled and Multi-Walled Carbon
Nanotubes ...................................... 385
15.3.2 Functionalization of CNTs ...................... 385
15.3.2.1 Covalent Surface Modification ......... 385
15.3.2.2 Noncovalent Surface Modification ...... 386
15.3.3 CNT Delivery System ............................ 386
15.3.3.1 Delivery of Antibodies and Peptides ... 387
15.3.3.2 Delivery of siRNA ..................... 387
15.3.3.3 Delivery of DNA Molecules ............. 387
15.3.3.4 Delivery of CpG ....................... 388
15.3.3.5 Delivery of Vaccines .................. 388
15.3.3.6 Delivery of Chemical Drugs ............ 388
15.4 Strategies of Application of CNTs to
Brain Tumor Therapy ................................... 389
15.4.1 CNTs Targeting Brain Tumor-Macrophages ......... 389
15.4.1.1 Internalization of CNTs by BV2
Microglia Cells in vitro .............. 389
15.4.1.2 Preferential Uptake of CNTs by
Macrophages in a Glioma Model ......... 390
15.4.1.3 Phosphatidylserine-Coated CNTs
Targeting Microglia / Macrophages ..... 391
15.4.2 CNTs Targeting Tumor Cells and Preliminary
Efforts Towards In Vivo Cancer Therapy ......... 392
15.4.2.1 CNTs Actively Targeting Tumor Cells ... 392
15.4.2.2 CNTs Passively Targeting Tumor
Cells ................................. 392
15.4.2.3 CNTs Thermal Effects on Tumor Cells ... 393
15.5 Toxicity Issues of CNTs in Brain Tumor Therapy ........ 394
15.6 Conclusions and Future Directions ..................... 395
Acknowledgments ............................................ 395
References ................................................. 395
16 Carbon Nanotubes in Cancer Therapy, including Boron
Neutron Capture Therapy (BNCT) ............................. 403
Amartya Chakrabarti, Hiren Patel, John Price, John A.
Maguire and Narayan S. Hosmane
16.1 Introduction .......................................... 403
16.2 Carbon Nanotubes in the Treatment of Cancer ........... 403
16.2.1 Drug Delivery .................................. 404
16.2.2 Imaging and Probing ............................ 406
16.2.3 Photothermal and Photoacoustic Therapy ......... 407
16.3 BNCT and Its Development through Nanotechnology ....... 409
16.3.1 BNCT: A Brief Overview ......................... 409
16.3.2 Liposomes ...................................... 411
16.3.3 Dendritic Macromolecules ....................... 411
16.3.4 Magnetic Nanoparticles ......................... 413
16.4 The Role of Carbon Nanotubes in BNCT .................. 413
16.5 Summary and Future Outlook ............................ 415
References ................................................. 415
17 Fullerenes in Photodynamic Therapy ......................... 419
Sulbha K. Sharma, Ying-Ying Huang, Pawel Mroz, Tim
Wharton, Long Y. Chiang and Michael R. Hamblin
17.1 Introduction .......................................... 419
17.2 Photodynamic Therapy .................................. 420
17.2.1 Traditional Photosensitizers ................... 421
17.2.2 Photophysics and Photochemistry in PDT ......... 422
17.2.3 Anticancer Mechanism of PDT .................... 424
17.2.3.1 Cellular Effects ...................... 424
17.2.3.2 In Vivo Effects ....................... 425
17.2.4 Antimicrobial Mechanism of PDT ................. 425
17.3 Fullerenes as Photosensitizers ........................ 425
17.3.1 Photophysics of Fullerenes ..................... 426
17.3.2 Photochemistry of Fullerenes ................... 427
17.3.3 Interactions of Fullerenes with DNA ............ 429
17.3.4 Drug-Delivery Strategies for Fullerenes ........ 430
17.3.5 Strategies to Overcome the Unfavorable
Spectral Absorption of Fullerenes .............. 432
17.3.5.1 Covalent Attachment of Light-
Harvesting Antennae to Fullerenes ..... 433
17.3.5.2 Two-Photon PDT ........................ 434
17.4 Anticancer Effects of Fullerenes ...................... 436
17.4.1 In Vitro PDT with Fullerenes ................... 436
17.4.2 In Vivo PDT with Fullerenes .................... 438
17.5 Fullerenes for Antimicrobial Photoinactivation ........ 439
17.5.1 Photoinactivation of Viruses ................... 439
17.5.2 Photoinactivation of Bacteria and Other
Pathogens ...................................... 440
17.6 Summary and Future Perspectives ....................... 441
Acknowledgments ............................................... 442
References .................................................... 442
Index ......................................................... 449
|