Haupt P. Continuum mechanics and theory of materials (Berlin; Heidelberg, 2002). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаHaupt P. Continuum mechanics and theory of materials / translated from German by Joan A. Kurth. - 2nd ed. - Berlin; Heidelberg: Springer, 2002. - 643 p.: ill. - (Advanced texts in physics). - Ref.: p.619-633. - Ind.: p.635-643. - ISBN 3-540-43111-X; ISSN 1439-2674
 

Место хранения: 015 | Библиотека Института гидродинамики CO РАН | Новосибирск

Оглавление / Contents
 
Introduction .................................................... 1

1  Kinematics ................................................... 7
   1.1  Material Bodies ......................................... 7
   1.2  Material and Spatial Representation .................... 19
   1.3  Deformation Gradient ................................... 23
   1.4  Strain Tensors ......................................... 32
   1.5  Convective Coordinates ................................. 38
   1.6  Velocity Gradient ...................................... 42
   1.7  Strain Rate Tensors .................................... 46
   1.8  Strain Rates in Convective Coordinates ................. 50
   1.9  Geometric Linearisation ................................ 53
   1.10 Incompatible Configurations ............................ 57
        1.10.1 Euclidean Space ................................. 58
        1.10.2 Non-Euclidean Spaces ............................ 63
        1.10.3 Conditions of Compatibility ..................... 64

2  Balance Relations of Mechanics .............................. 75
   2.1  Preliminary Remarks .................................... 75
   2.2  Mass ................................................... 78
        2.2.1  Balance of Mass: Global Form .................... 78
        2.2.2  Balance of Mass: Local Form ..................... 79
   2.3  Linear Momentum and Rotational Momentum ................ 84
        2.3.1  Balance of Linear Momentum and Rotational
               Momentum: Global Formulation .................... 84
        2.3.2  Stress Tensors .................................. 90
        2.3.3  Stress Tensors in Convective Coordinates ........ 95
        2.3.4  Local Formulation of the Balance of Linear
               Momentum and Rotational Momentum ................ 95
        2.3.5  Initial and Boundary Conditions ................ 101
   2.4  Conclusions from the Balance Equations of Mechanics ... 104
        2.4.1  Balance of Mechanical Energy ................... 105
        2.4.2  The Principle of d'Alembert .................... 109
        2.4.3  Principle of Virtual Work ...................... 114
        2.4.4  Incremental Form of the Principle of
               d'Alembert ..................................... 115

3  Balance Relations of Thermodynamics ........................ 119
   3.1  Preliminary Remarks ................................... 119
   3.2  Energy ................................................ 120
   3.3  Temperature and Entropy ............................... 125
   3.4  Initial and Boundary Conditions ....................... 130
   3.5  Balance Relations for Open Systems .................... 132
        3.5.1  Transport Theorem .............................. 132
        3.5.2  Balance of Linear Momentum for Systems with
               Time-Dependent Mass ............................ 135
        3.5.3  Balance Relations: Conservation Laws ........... 137
        3.5.4  Discontinuity Surfaces and Jump Conditions ..... 140
        3.5.5  Multi-Component Systems (Mixtures) ............. 144
   3.6  Summary: Basic Relations of Thermomechanics ........... 153

4  Objectivity ................................................ 155
   4.1  Frames of Reference ................................... 155
   4.2  Affine Spaces ......................................... 156
   4.3  Change of Frame: Passive Interpretation ............... 159
   4.4  Change of Frame: Active Interpretation ................ 162
   4.5  Objective Quantities .................................. 164
   4.6  Observer-Invariant Relations .......................... 171

5  Classical Theories of Continuum Mechanics .................. 177
   5.1  Introduction .......................................... 177
   5.2  Elastic Fluid ......................................... 178
   5.3  Linear-Viscous Fluid .................................. 182
   5.4  Linear-Elastic Solid .................................. 185
   5.5  Linear-Viscoelastic Solid ............................. 188
   5.6  Perfectly Plastic Solid ............................... 227
   5.7  Plasticity with Hardening ............................. 231
   5.8  Viscoplasticity with Elastic Range .................... 243
   5.9  Remarks on the Classical Theories ..................... 249

6  Experimental Observation and Mathematical Modelling ........ 251
   6.1  General Aspects ....................................... 251
   6.2  Information from Experiments .......................... 255
        6.2.1  Material Properties of Steel XCrNi 18.9 ........ 255
        6.2.2  Material Properties of Carbon-Black-Filled
               Elastomers ..................................... 263
   6.3  Four Categories of Material Behaviour ................. 269
   6.4  Four Theories of Material Behaviour ................... 271
   6.5  Contribution of the Classical Theories ................ 273

7  General Theory of Mechanical Material Behaviour ............ 275
   7.1  General Principles .................................... 275
   7.2  Constitutive Equations ................................ 279
        7.2.1  Simple Materials ............................... 279
        7.2.2  Reduced Forms of the General Constitutive
               Equation ....................................... 283
        7.2.3  Simple Examples of Material Objectivity ........ 288
        7.2.4  Frame-Indifference and Observer-Invariance ..... 289
   7.3  Properties of Material Symmetry ....................... 293
        7.3.1  The Concept of the Symmetry Group .............. 293
        7.3.2  Classification of Simple Materials into
               Fluids and Solids .............................. 298
   7.4  Kinematic Conditions of Internal Constraint ........... 305
        7.4.1  General Theory ................................. 305
        7.4.2  Special Conditions of Internal Constraint ...... 308
   7.5  Formulation of Material Models ........................ 311
        7.5.1  General Aspects ................................ 311
        7.5.2  Representation by Means of Functionals ......... 312
        7.5.3  Representation by Means of Internal
               Variables ...................................... 313
        7.5.4  Comparison ..................................... 315

8  Dual Variables ............................................. 317
   8.1  Tensor-Valued Evolution Equations ..................... 317
        8.1.1  Introduction ................................... 317
        8.1.2  Objective Time Derivatives of Objective
               Tensors ........................................ 319
        8.1.3  Example: Maxwell Fluid ......................... 322
        8.1.4  Example: Rigid-Plastic Solid with Hardening .... 325
   8.2  The Concept of Dual Variables ......................... 329
        8.2.1  Motivation ..................................... 329
        8.2.2  Strain and Stress Tensors (Summary) ............ 331
        8.2.3  Dual Variables and Derivatives ................ 334

9  Elasticity ................................................. 345
   9.1  Elasticity and Hyperelasticity ........................ 345
   9.2  Isotropic Elastic Bodies .............................. 352
        9.2.1  General Constitutive Equation for Elastic
               Fluids and Solids .............................. 352
        9.2.2  Isotropic Hyperelastic Bodies .................. 358
        9.2.3  Incompressible Isotropic Elastic Materials ..... 363
        9.2.4  Constitutive Equations of Isotropic
               Elasticity (Examples) .......................... 365
   9.3  Anisotropic Hyperelastic Solids ....................... 376
        9.3.1  Approximation of the General Constitutive
               Equation ....................................... 376
        9.3.2  General Representation of the Strain Energy
               Function ....................................... 379
        9.3.2  Physical Linearisation ......................... 388

10 Viscoelasticity ............................................ 397
   10.1 Representation by Means of Functionals ................ 397
        10.1.1 Rate-Dependent Functionals with Fading Memory
               Properties ..................................... 398
        10.1.2 Continuity Properties and Approximations ....... 410
   10.2 Representation by Means of Internal Variables ......... 419
        10.2.1 General Concept ................................ 419
        10.2.2 Internal Variables of the Strain Type .......... 426
        10.2.3 A General Model of Finite Viscoelasticity ...... 433

11 Plasticity ................................................. 435
   11.1 Rate-Independent Functionals .......................... 435
   11.2 Representation by Means of Internal Variables ......... 444
   11.3 Elastoplasticity ...................................... 450
        11.3.1 Preliminary Remarks ............................ 450
        11.3.2 Stress-Free Intermediate Configuration ......... 454
        11.3.3 Isotropic Elasticity ........................... 459
        11.3.4 Yield Function and Evolution Equations ......... 460
        11.3.5 Consistency Condition .......................... 463

12 Viscoplasticity ............................................ 475
   12.1 Preliminary Remarks ................................... 475
   12.2 Viscoplasticity with Elastic Domain ................... 477
        12.2.1 A General Constitutive Model ................... 477
        12.2.2 Application of the Intermediate
               Configuration .................................. 480
   12.3 Plasticity as a Limit Case of Viscoplasticity ......... 484
        12.3.1 The Differential Equation of the Yield
               Function ....................................... 484
        12.3.2 Relaxation Property ............................ 489
        12.3.3 Slow Deformation Processes ..................... 491
        12.3.4 Elastoplasticity and Arclength
               Representation ................................. 497
   12.4 A Concept for General Viscoplasticity ................. 499
        12.4.1 Motivation ..................................... 499
        12.4.2 Equilibrium Stress and Overstress .............. 500
        12.4.3 An Example of General Viscoplasticity .......... 501
        12.4.4 Conclusions Regarding the Modelling of
               Mechanical Material Behaviour .................. 507

13 Constitutive Models in Thermomechanics ..................... 509
   13.1 Thermomechanical Consistency .......................... 509
   13.2 Thermoelasticity ...................................... 514
        13.2.1 General Theory ................................. 514
        13.2.2 Thermoelastic Fluid ............................ 520
        13.2.3 Linear-Thermoelastic Solids .................... 527
   13.3 Thermoviscoelasticity ................................. 530
        13.3.1 General Concept ................................ 530
        13.3.2 Thermoelasticity as a Limit Case of
               Thermoviscoelasticity .......................... 537
        13.3.3 Internal Variables of Strain Type .............. 541
        13.3.4 Incorporation of Anisotropic Elasticity
               Properties ..................................... 545
        13.3.5 Incompressible Materials: An Extension of
               the Mooney-Rivlin Model to
               Thermoviscoelasticity .......................... 545
   13.4 Thermoviscoplasticity with Elastic Domain ............. 554
        13.4.1 Uniaxial Viscoplasticity ....................... 554
        13.4.2 General Concept ................................ 560
        13.4.3 Application of the Intermediate
               Configuration .................................. 564
        13.4.4 Thermoplasticity as a Limit Case of
               thermoviscoplasticity .......................... 568
   13.5 General Thermoviscoplasticity ......................... 577
        13.5.1 Small Deformations ............................. 578
        13.5.2 Finite Deformations ............................ 581
        13.5.3 Conclusion ..................................... 585
   13.6 Anisotropic Material Properties ....................... 586
        13.6.1 Motivation ..................................... 586
        13.6.2 Axes of Elastic Anisotropy ..................... 587
   13.7 Anisotropic Viscoplasticity ........................... 591
        13.7.1 General Considerations ......................... 591
        13.7.2 Free Energy Function ........................... 593
        13.7.3 Evolution Equations ............................ 596
        13.7.4 Lattice Spin ................................... 603
        13.7.5 Summary: A Constitutive Model of Anisotropic
               Viscoplasticity ................................ 606
   13.7.6 Numerical Simulations ............................... 608
   13.7.7 Closing Remark ...................................... 618
   References ................................................. 619

Index ......................................................... 635


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:22:50 2019. Размер: 17,106 bytes.
Посещение N 1924 c 01.11.2011