Wachtman J.B. Mechanical properties of ceramics (Hoboken, 2009). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаWachtman J.B. Mechanical properties of ceramics / J.B.Wachtman, W.R.Cannon, M.J.Matthewson. - 2nd ed. - Hoboken: Wiley, 2009. - xvi, 479 p.: ill. - Ref.: p.439-471. - Ind.: p.473-479. - ISBN 978-0-471-73581-6
 

Оглавление / Contents
 
Preface ...................................................... xiii
Acknowledgments ................................................ xv

1  Stress and Strain ............................................ 1
   1.1  Introduction ............................................ 1
   1.2  Tensor Notation for Stress .............................. 5
   1.3  Stress in Rotated Coordinate System ..................... 8
   1.4  Principal Stress ....................................... 11
   1.5  Stress Invariants ...................................... 16
   1.6  Stress Deviator ........................................ 16
   1.7  Strain ................................................. 17
   1.8  True Stress and True Strain ............................ 20
   Problems .................................................... 23
2  Types of Mechanical Behavior ................................ 27
   2.1  Introduction ........................................... 27
   2.2  Elasticity and Brittle Fracture ........................ 28
   2.3  Permanent Deformation .................................. 31
3  Elasticity .................................................. 35
   3.1  Introduction ........................................... 35
   3.2  Elasticity of Isotropic Bodies ......................... 36
   3.3  Reduced Notation for Stresses, Strains, and Elastic
        Constants .............................................. 38
   3.4  Effect of Symmetry on Elastic Constants ................ 41
   3.5  Orientation Dependence of Elastic Moduli in Single
        Crystals and Composites ................................ 43
   3.6  Values of Polycrystalline Moduli in Terms  of
        Single-Crystal Constants ............................... 44
   3.7  Variation of Elastic Constants with Lattice
        Parameter .............................................. 45
   3.8  Variation of Elastic Constants with Temperature ........ 47
   3.9  Elastic Properties of Porous Ceramics .................. 49
   3.10 Stored Elastic Energy .................................. 52
   Problems .................................................... 53
4  Strength of Defect-Free Solids .............................. 55
   4.1  Introduction ........................................... 55
   4.2  Theoretical Strength in Tension ........................ 55
   4.3  Theoretical Strength in Shear .......................... 59
   Problems .................................................... 60
5  Linear Elastic Fracture Mechanics ........................... 63
   5.1  Introduction ........................................... 63
   5.2  Stress Concentrations .................................. 64
   5.3  Griffith Theory of Fracture of a Brittle Solid ......... 65
   5.4  Stress at Crack Tip: An Estimate ....................... 69
   5.5  Crack Shape in Brittle Solids .......................... 70
   5.6  Irwin Formulation of Fracture Mechanics: Stress
        Intensity Factor ....................................... 71
   5.7  Irwin Formulation of Fracture Mechanics: Energy
        Release Rate ........................................... 75
   5.8  Some Useful Stress Intensity Factors ................... 79
   5.9  The J Integral ......................................... 81
   5.10 Cracks with Internal Loading ........................... 83
   5.11 Failure under Multiaxial Stress ........................ 85
   Problems .................................................... 87
6  Measurements of Elasticity, Strength, and Fracture
   Toughness ................................................... 89
   6.1  Introduction ........................................... 89
   6.2  Tensile Tests .......................................... 91
   6.3  Flexure Tests .......................................... 95
   6.4  Double-Cantilever-Beam Test ........................... 104
   6.5  Double-Torsion Test ................................... 106
   6.6  Indentation Test ...................................... 106
   6.7  Biaxial Flexure Testing ............................... 113
   6.8  Elastic Constant Determination Using Vibrational
        and Ultrasonic Methods ................................ 113
   Problems ................................................... 115
7  Statistical Treatment of Strength .......................... 119
   7.1  Introduction .......................................... 119
   7.2  Statistical Distributions ............................. 120
   7.3  Strength Distribution Functions ....................... 121
   7.4  Weakest Link Theory ................................... 125
   7.5  Determining Weibull Parameters ........................ 128
   7.6  Effect of Specimen Size ............................... 129
   7.7  Adaptation to Bend Testing ............................ 130
   7.8  Safety Factors ........................................ 136
   7.9  Example of Safe Stress Calculation .................... 136
   7.10 Proof Testing ......................................... 138
   7.11 Use of Pooled Fracture Data in Linear Regression
        Determination of Weibull Parameters ................... 140
   7.12 Method of Maximum Likelihood in Weibull Parameter
        Estimation ............................................ 141
   7.13 Statistics of Failure under Multiaxial Stress ......... 144
   7.14 Effects of Slow Crack Propagation and R-Curve
        Behavior on Statistical Distributions of Strength ..... 146
   7.15 Surface Flaw Distributions and Multiple Flaw
        Distributions ......................................... 147
   Problems ................................................... 149
8  Subcritical Crack Propagation .............................. 151
   8.1  Introduction .......................................... 151
   8.2  Observed Subcritical Crack Propagation ................ 152
   8.3  Crack Velocity Theory and Molecular Mechanism ......... 155
   8.4  Time to Failure under Constant Stress ................. 158
   8.5  Failure under Constant Stress Rate .................... 162
   8.6  Comparison of Times to Failure under Constant Stress
        and Constant Stress Rate .............................. 164
   8.7  Relation of Weibull Statistical Parameters with
        and without Subcritical Crack Growth .................. 164
   8.8  Construction of Strength-Probability-Time Diagrams .... 166
   8.9  Proof Testing to Guarantee Minimum Life ............... 171
   8.10 Subcritical Crack Growth and Failure from Flaws
        Originating from Residual Stress Concentrations ....... 172
   8.11 Slow Crack Propagation at High Temperature ............ 173
   Problems ................................................... 175
9  Stable Crack Propagation and R-Curve Behavior .............. 177
   9.1  Introduction .......................................... 177
   9.2  R-Curve (T-Curve) Concept ............................. 179
   9.3  R-Curve Effects of Strength Distributions ............. 185
   9.4  Effect of R-Curve on Subcritical Crack Growth ......... 186
   Problems ................................................... 186
10 Overview of Toughening Mechanisms in Ceramics .............. 189
   10.1 Introduction .......................................... 189
   10.2 Toughening by Crack Deflection ........................ 191
   10.3 Toughening by Crack Bowing ............................ 193
   10.4 General Remarks on Crack Tip Shielding ................ 194
11 Effect of Microstructure on Toughness and Strength ......... 199
   11.1 Introduction .......................................... 199
   11.2 Fracture Modes in Polycrystalline Ceramics ............ 200
   11.3 Crystalline Anisotropy in Polycrystalline Ceramics .... 204
   11.4 Effect of Grain Size on Toughness ..................... 207
   11.5 Natural Flaws in Polycrystalline Ceramics ............. 210
   11.6 Effect of Grain Size on Fracture Strength ............. 212
   11.7 Effect of Second-Phase Particles on Fracture
        Strength .............................................. 217
   11.8 Relationship between Strength and Toughness ........... 219
   11.9 Effect of Porosity on Toughness and Strength .......... 220
   11.10 Fracture of Traditional Ceramics ..................... 222
   Problems ................................................... 224
12 Toughening by Transformation ............................... 227
   12.1 Introduction .......................................... 227
   12.2 Basic Facts of Transformation Toughening .............. 228
   12.3 Theory of Transformation Toughening ................... 230
   12.4 Shear-Dilatant Transformation Theory .................. 233
   12.5 Grain-Size-Dependent Transformation Behavior .......... 233
   12.6 Application of Theory to Ca-Stabilized Zirconia ....... 242
   Problems ................................................... 245
13 Mechanical Properties of Continuous-Fiber-Reinforced
   Ceramic Matrix Composites .................................. 249
   13.1 Introduction .......................................... 249
   13.2 Elastic Behavior of Composites ........................ 250
   13.3 Fracture Behavior of Composites with Continuous,
        Aligned Fibers ........................................ 253
   13.4 Complete Matrix Cracking of Composites with
        Continuous, Aligned Fibers ............................ 255
   13.5 Propagation of Short, Fully Bridged Cracks ............ 260
   13.6 Propagation of Partially Bridged Cracks ............... 264
   13.7 Additional Treatment of Crack-Bridging Effects ........ 267
   13.8 Additional Statistical Treatments ..................... 269
   13.9 Summary of Fiber-Toughening Mechanisms ................ 270
   13.10 Other Failure Mechanisms in Continuous, Aligned-
         Fiber Composites ..................................... 270
   13.11 Tensile Stress-Strain Curve of Continuous, Aligned-
         Fiber Composites ..................................... 271
   13.12 Laminated Composites ................................. 273
   Problems ................................................... 274
14 Mechanical Properties of Whisker-, Ligament-, and
   Platelet-Reinforced Ceramic Matrix Composites .............. 277
   14.1 Introduction .......................................... 277
   14.2 Model for Whisker Toughening .......................... 278
   14.3 Combined Toughening Mechanisms in Whisker-Reinforced
        Composites ............................................ 288
   14.4 Ligament-Reinforced Ceramic Matrix Composites ......... 288
   14.5 Platelet-Reinforced Ceramic Matrix Composites ......... 289
   Problems ................................................... 289
15 Cyclic Fatigue of Ceramics ................................. 291
   15.1 Introduction .......................................... 291
   15.2 Cyclic Fatigue of Metals .............................. 292
   15.3 Cyclic Fatigue of Ceramics ............................ 295
   15.4 Mechanisms of Cyclic Fatigue of Ceramics .............. 298
   15.5 Cyclic Fatigue by Degradation of Crack Bridges ........ 298
   15.6 Short-Crack Fatigue of Ceramics ....................... 298
   15.7 Implications of Cyclic Fatigue in Design of
        Ceramics .............................................. 301
   Problems ................................................... 301
16 Thermal Stress and Thermal Shock in Ceramics ............... 303
   16.1 Introduction .......................................... 303
   16.2 Magnitude of Thermal Stresses ......................... 304
   16.3 Figure of Merit for Various Thermal Stress
        Conditions ............................................ 304
   16.4 Crack Propagation under Thermal Stress ................ 306
   Problems ................................................... 313
17 Fractography ............................................... 317
   17.1 Introduction .......................................... 317
   17.2 Qualitative Features of Fracture Surfaces ............. 318
   17.3 Quantitative Fractography ............................. 325
   17.4 Fractal Concepts in Fractography ...................... 328
   17.5 Fractography of Single Crystals and Polycrystals ...... 328
   Problems ................................................... 330
18 Dislocations and Plastic Deformation in Ductile Crystals ... 333
   18.1 Introduction .......................................... 333
   18.2 Definition of Dislocations ............................ 334
   18.3 Glide and Climb of Dislocations ....................... 337
   18.4 Force on a Dislocation ................................ 337
   18.5 Stress Field and Energy of a Dislocation .............. 339
   18.6 Force Required to Move a Dislocation .................. 340
   18.7 Line Tension of a Dislocation ......................... 341
   18.8 Dislocation Multiplication ............................ 342
   18.9 Forces between Dislocations ........................... 343
   18.10 Dislocation Pileups .................................. 345
   18.11 Orowan's Equation for Strain Rate .................... 346
   18.12 Dislocation Velocity ................................. 347
   18.13 Hardening by Solid Solution and Precipitation ........ 348
   18.14 Slip Systems ......................................... 349
   18.15 Partial Dislocations ................................. 351
   18.16 Deformation Twinning ................................. 353
   Problems ................................................... 356
19 Dislocations and Plastic Deformation in Ceramics ........... 357
   19.1 Introduction .......................................... 357
   19.2 Slip Systems in Ceramics .............................. 358
   19.3 Independent Slip Systems .............................. 359
   19.4 Plastic Deformation in Single-Crystal Alumina ......... 360
   19.5 Twinning in Aluminum Oxide ............................ 366
   19.6 Plastic Deformation of Single-Crystal Magnesium
        Oxide ................................................. 368
   19.7 Plastic Deformation of Single-Crystal Cubic
        Zirconia .............................................. 369
   Problems ................................................... 369
20 Creep in Ceramics .......................................... 371
   20.1 Introduction .......................................... 371
   20.2 Nabarro-Herring Creep ................................. 373
   20.3 Combined Diffusional Creep Mechanisms ................. 374
   20.4 Power Law Creep ....................................... 376
   20.5 Combined Diffusional and Power Law Creep .............. 378
   20.6 Role of Grain Boundaries in High-Temperature
        Deformation and Failure ............................... 379
   20.7 Damage-Enhanced Creep ................................. 380
   20.8 Superplasticity ....................................... 382
   20.9 Deformation Mechanism Maps ............................ 388
   Problems ................................................... 388
21 Creep Rupture at High Temperatures and Safe Life Design .... 391
   21.1 Introduction .......................................... 391
   21.2 General Process of Creep Damage and Failure in
        Ceramics .............................................. 391
   21.3 Monkman-Grant Technique of Life Prediction ............ 395
   21.4 Two-Stage Strain Projection Technique ................. 397
   21.5 Fracture Mechanism Maps ............................... 399
   Problems ................................................... 403
22 Hardness and Wear .......................................... 405
   22.1 Introduction .......................................... 405
   22.2 Spherical Indenters versus Sharp Indenters ............ 406
   22.3 Methods of Hardness Measurement ....................... 408
   22.4 Deformation around Indentation ........................ 410
   22.5 Cracking around Indentation ........................... 412
   22.6 Indentation Size Effect ............................... 413
   22.7 Wear Resistance ....................................... 416
   Problems ................................................... 421
23 Mechanical Properties of Glass and Glass Ceramics .......... 423
   23.1 Introduction .......................................... 423
   23.2 Typical Inorganic Glasses ............................. 423
   23.3 Viscosity of Glass .................................... 424
   23.4 Elasticity of Inorganic Glasses ....................... 425
   23.5 Strength and Fracture Surface Energy of Inorganic
        Glasses ............................................... 426
   23.6 Achieving High Strength in Bulk Glasses ............... 427
   23.7 Glass Ceramics ........................................ 429
   Problems ................................................... 429
24 Mechanical Properties of Polycrystalline Ceramics
   in General and Design Considerations ....................... 431
   24.1 Introduction .......................................... 431
   24.2 Mechanical Properties of Polycrystalline Ceramics in
        General ............................................... 432
   24.3 Design Involving Mechanical Properties ................ 436
   References ................................................. 439

Index ......................................................... 473


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:22:46 2019. Размер: 21,421 bytes.
Посещение N 2041 c 18.10.2011