Vajtersic M. Algorithms for elliptic problems: efficient sequential and parallel solvers (Dordrecht; London, 1992). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаVajteršic M. Algorithms for elliptic problems: efficient sequential and parallel solvers. - Dordrecht; London: Kluwer Academic Publishers, 1992. - xviii, 292 p. - (Mathematics and its applications; 58). - Bibliogr. at the end of the chapters. - Sub. ind.: p.288-292. - ISBN 978-90-481-4190-6
 

Оглавление / Contents
 
Series editor's preface ......................................... v
INTRODUCTION ................................................. xiii

1  FAST METHODS FOR SOLVING THE POISSON EQUATION ................ 1
   1.1  Introduction ............................................ 1
   1.2  Direct methods .......................................... 5
        1.2.1  Introduction ..................................... 5
        1.2.2  Shintani's algorithm ............................. 7
        1.2.3  Fundamental marching algorithms ................. 10
        1.2.4  Mejran's modification of the matrix
               decomposition algorithm ......................... 12
        1.2.5  Lorenz's variant of the marching method ......... 14
   1.3  Applications of direct methods to solving other
        boundary value problems ................................ 17
        1.3.1  Neumann's boundary value problem ................ 17
        1.3.2  Problem with periodic boundary value
               conditions ...................................... 23
   1.4  Iterative methods ...................................... 26
        1.4.1  Introduction .................................... 26
        1.4.2  Fundamental iterative methods ................... 27
        1.4.3  Two-step and optimalization methods ............. 29
        1.4.4  Relaxation multigrid method ..................... 33
   1.5  Solving the Poisson equation on non-rectangular
        domains ................................................ 35
        1.5.1  Introduction .................................... 35
        1.5.2  Method of embedding into a rectangle ............ 37
        1.5.3  Method of Active unknowns ....................... 39
        1.5.4  Method of decomposition ......................... 41
        1.5.5  An algorithm for an octagonal domain ............ 44
        1.5.6  An algorithm for a disc ......................... 47
   References .................................................. 50

2 FAST SERIAL ALGORITHMS FOR SOLVING BIHARMONIC EQUATION ....... 53
   2.1  Introduction ........................................... 53
   2.2  Direct, methods ........................................ 56
        2.2.1  Golub's algorithm ............................... 58
        2.2.2  The Buzbee-Dorr algorithm ....................... 60
        2.2.3  Bjørstad's algorithm ............................ 61
   2.3  Algorithms based on splitting .......................... 63
        2.3.1 The splitting method ............................. 63
        2.3.2  A fast iterative process for the splitting
               method and its algorithmic and program
               realization ..................................... 68
        2.3.3  An algorithm for one iteration using an
               elimination procedure ........................... 73
   2.4  Solving the eigenvalue problem for a biharmonic
        operator ............................................... 78
   References .................................................. 84

3  PARALLEL ALGORITHMS FOR SOLVING CERTAIN ELLIPTIC BOUND
   ARY VALUE PROBLEMS .......................................... 87
   3.1  Introduction ........................................... 87
   3.2  Parallel methods for solving the Poisson equation on
        multiprocessors ........................................ 90
        3.2.1  Introduction .................................... 90
        3.2.2  Parallel block matrix decomposition ............. 91
        3.2.3  Parallel marching algorithms .................... 95
        3.2.4  A parallel domain decomposition method ......... 101
        3.2.5  A parallel variant of the cyclic odd-even
               reduction solver ............................... 105
        3.2.6  An iterative parallel algorithm ................ 108
   3.3  Parallel algorithms for solving biharmonic equations
        on SIMD computers ..................................... 111
        3.3.1  Introduction ................................... 1ll
        3.3.2  Parallel algorithms using matrix
               decomposition .................................. 114
        3.3.3  Application of reduction algorithms ............ 118
        3.3.4  Elimination parallel algorithm ................. 124
        3.3.5  A block explicit iterative method .............. 128
   References ................................................. 130

4  IMPLEMENTATION OF PARALLEL ALGORITHMS ON SPECIALIZED
   COMPUTERS .................................................. 134
   4.1  Introduction .......................................... 134
   4.2  Implementation of parallel algorithms on matrix
        processors ............................................ 139
        4.2.1  Introduction ................................... 139
        4.2.2  Algorithms for the matrix processor ICL DAP .... 141
        4.2.3  Multicolour iteration schemes for the
               specialized FEM processor ...................... 147
   4.3  Parallel algorithms for pipeline computers ............ 149
        4.3.1  Introduction ................................... 149
        4.3.2  Conjugate gradient algorithm for CDC
               STAR-100 ....................................... 152
        4.3.3  Black-white iteration scheme on the CRAY-1
               computer ....................................... 157
   4.4  Implementation of fast parallel algorithms for
        solving Poisson and biharmonic equations on
        multiprocessor computers .............................. 161
        4.4.1  Introduction ................................... 161
        4.4.2  Principal characteristics of the EGPA system ... 164
        4.4.3  Formulation of algorithms for EGPA ............. 166
        4.4.4  The results of the implementation .............. 170
   4.5  Algorithms for massively parallel computers ........... 173
        4.5.1  Introduction ................................... 173
        4.5.2  An example for the Connection Machine .......... 174
        4.5.3  Matrix multiplication on the MasPar computer ... 179
   References ................................................. 198

5  PARALLEL MULTIGRID ALGORITHMS .............................. 203
   5.1  Introduction .......................................... 203
   5.2  Parallelization principles for multigrid algorithms ... 207
        5.2.1  Introduction ................................... 207
        5.2.2  Parallel implementation of a multigrid cycle ... 207
        5.2.3  SIMD implementation of the multigrid
               algorithm ...................................... 211
        5.2.4  Algorithm for a parallel computation over all
               grids .......................................... 214
        5.2.5  Complexity of multigrid algorithms for some
               parallel computer topologies ................... 218
   5.3  Multigrid algorithms for parallel systems with
        hypercube structure ................................... 226
        5.3.1  Introduction ................................... 226
        5.3.2  Hypercube and Gray code ........................ 228
        5.3.3  Parallelization of multigrid algorithms by
               Gray codes ..................................... 231
   5.4  Experiments with multigrid algorithms on parallel
        computers ............................................. 237
        5.4.1  Introduction ................................... 237
        5.4.2  The multigrid parallel method for the CRAY
               X-MP ........................................... 238
        5.4.3  Algorithms for the DIRMU modular system ........ 243
        5.4.4  Multigrid  method  amenable for
               implementation on systems with massive
               parallelism .................................... 246
   References ................................................. 249

6  VLSI ELLIPTIC SOLVERS ...................................... 252
   6.1  Introduction .......................................... 252
   6.2  VLSI algorithms for special band systems .............. 253
        6.2.1  Introduction ................................... 253
        6.2.2  Recursive algorithm for band systems ........... 253
        6.2.3  VLSI cyclic reduction .......................... 256
   6.3  VLSI Poisson solvers .................................. 258
        6.3.1  Introduction ................................... 258
        6.3.2  Matrix decomposition VLSI algorithm ............ 259
        6.3.3  VLSI implementation of an elimination Poisson
               solver ......................................... 261
        6.3.4  VLSI cyclic odd-even designs ................... 266
        6.3.5  VLSI multigrid solver .......................... 270
   6.4  VLSI Helmholtz and biharmonic solvers ................. 272
        6.4.1  Introduction ................................... 272
        6.4.2  A VLSI capacitance matrix solver for the
               Helmholtz equation ............................. 273
        6.4.3  A VLSI biharmonic semidirect solver with
               multigrid Poisson blocks ....................... 277
        6.4.4  An  application of direct VLSI Poisson
               solvers to the biharmonic problem .............. 283
        References ............................................ 286

Subject index ................................................. 288


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:22:46 2019. Размер: 13,343 bytes.
Посещение N 1676 c 18.10.2011