Memoirs of the American Mathematical Society; vol.211, N 992 (Providence, 2011). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаGreenberg R. Iwasawa theory, projective modules, and modular representations. - Providence: American Mathematical Society, 2011. - v, 185 p. - (Memoirs of the American Mathematical Society; vol.211, N 992). - Bibliogr.: p.183-185. - ISBN 978-0-8218-4931-6; ISSN 0065-9266
 

Место хранения: 013 | Институт математики СО РАН | Новосибирск | Библиотека

Оглавление / Contents
 
Chapter 1.  Introduction ........................................ 1
1.1  Congruence relations ....................................... 2
1.2  Selmer groups for elliptic curves .......................... 6
1.3  Behavior of Iwasawa invariants ............................. 9
1.4  Selmer atoms .............................................. 10
1.5  Parity questions .......................................... 12
1.6  Other situations .......................................... 14
1.7  Organization and acknowledgements ......................... 16

Chapter 2.  Projective and quasi-projective modules ............ 17
2.1  Criteria for projectivity and quasi-projectivity .......... 17
2.2  Nonzero μ-invariant ....................................... 24
2.3  The structure of ΛGGθ ................................... 26
2.4  Projective dimension ...................................... 27

Chapter 3.  Projectivity or quasi-projectivity of ХЕΣ0) ..... 31
3.1  The proof of Theorem 1 .................................... 31
3.2  Quasi-projectivity ........................................ 37
3.3  Partial converses ......................................... 39
3.4  More general situations ................................... 41
3.5  Δ ⋊ Г-extensions ......................................... 44

Chapter 4.  Selmer atoms ....................................... 47
4.1  Various cohomology groups. Coranks. Criteria for 
     vanishing ................................................. 47
4.2  Selmer groups for E|p| fig.1 α ................................ 56
4.3  Justification of (1.4.b) and (1.4.c) ...................... 59
4.4  Justification of (1.4.d) and the proof of Theorem 2 ....... 62
4.5  Finiteness of Selmer atoms ................................ 63

Chapter 5.  The structure of Hυ, E) ......................... 69
5.1  Determination of δE,υ(σ) .................................. 70
5.2  Determination of (ρE,υ, χ) ................................ 72
5.3  Projectivity and Herbrand quotients ....................... 74

Chapter 6.  The case where Δ is a p-group ...................... 77

Chapter 7.  Other specific groups .............................. 81
7.1  The groups A4, S4, and S5 ................................. 81
7.2  The group PGL2(Fp) ........................................ 84
7.3  The groups PGL2(Z/pr+1Z) for r ≥ 1 ........................ 90
7.4  Extensions of (Z/pZ)× by a p-group ........................ 96

Chapter 8.  Some arithmetic illustrations ..................... 105
8.1  An illustration where Σ0 is empty ........................ 105
8.2  An illustration where Σ0 is non-empty .................... 109
8.3  An illustration where the σss's have abelian image ....... 114
8.4  False Tate extensions of Q ............................... 127

Chapter 9.  Self-dual representations ......................... 131
9.1  Various classes of groups ................................ 131
9.2  ΠΩ groups ................................................ 133
9.3  Some parity results concerning multiplicities ............ 137
9.4  Self-dual representations and the decomposition map ...... 139

Chapter 10. A duality theorem ................................. 141
10.1 The main result .......................................... 142
10.2 Consequences concerning the parity of sE(ρ) .............. 145

Chapter 11. p-modular functions ............................... 151
11.1 Basic examples of p-modular functions .................... 151
11.2 Some p-modular functions involving multiplicities ........ 152

Chapter 12. Parity ............................................ 159
12.1 The proof of Theorem 3 ................................... 160
12.2  Consequences concerning WDel(E,ρ) and WSelρ(E,ρ) .......... 167

Chapter 13. More arithmetic illustrations .................... 169
13.1 An illustration where ΨE  ΦK/F is empty ................. 170
13.2 An illustration where К fig.2 Q(E[p]) ...................... 172
13.3 An illustration where Gal(K/Q) is isomorphic to Bn or 
     Hn ....................................................... 174
Bibliography .................................................. 183


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:22:44 2019. Размер: 8,626 bytes.
Посещение N 1518 c 18.10.2011