Memoirs of the American Mathematical Society; vol.211, N 993 (Providence, 2011). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаGangbo W. Differential forms on Wasserstein space and infinite-dimensional Hamiltonian systems / W.Gangbo, H.K.Kim, T.Pacini. - Providence: American Mathematical Society, 2011. - v, 77 p. - (Memoirs of the American Mathematical Society; vol.211, N 993). - Bibliogr.: p.75-77. - ISBN 978-0-8218-4939-2; ISSN 0065-9266
 

Место хранения: 013 | Институт математики СО РАН | Новосибирск | Библиотека

Оглавление / Contents
 
Chapter 1.  Introduction ........................................ 1

Chapter 2.  The topology on M. and a differential calculus of
            curves .............................................. 5
2.1  The space of distributions ................................. 5
2.2  The topology on fig.3 ......................................... 5
2.3  Tangent spaces and the divergence operator ................. 6
2.4  Analytic justification for the tangent spaces .............. 8

Chapter 3.  The calculus of curves, revisited .................. 11
3.1  Embedding the geometry of fig.4D into fig.3 ...................... 11
3.2  The intrinsic geometry of fig.3 .............................. 11
3.3  Embedding the geometry of fig.3 into (Cc) ................... 13
3.4  Further comments .......................................... 14

Chapter 4.  Tangent and cotangent bundles ...................... 17
4.1  Push-forward operations on fig.3 and TM ...................... 17
4.2  Differential forms on fig.3 .................................. 18
4.3  Discussion ................................................ 23

Chapter 5.  Calculus of pseudo differential 1-forms ............ 25
5.1  Green's formula for smooth surfaces and 1-forms ........... 25
5.2  Regularity and differentiability of pseudo 1-forms ........ 27
5.3  Regular forms and absolutely continuous curves ............ 31
5.4  Green's formula for annuli ................................ 37
5.5  Example: 1-forms on the space of discrete measures ........ 43
5.6  Discussion ................................................ 44

Chapter 6.  A symplectic foliation of fig.3 ....................... 47
6.1  The group of Hamiltonian diffeomorphisms .................. 47
6.2  A symplectic foliation of fig.3 .............................. 49
6.3  Algebraic properties of the symplectic distribution ....... 53

Chapter 7.  The symplectic foliation as a Poisson structure .... 57
7.1  Review of Poisson geometry ................................ 57
7.2  The symplectic foliation of fig.3, revisited ................. 59

Appendix A. Review of relevant notions of Differential
            Geometry ........................................... 63
A.l.  Calculus of vector fields and differential forms ......... 63
A.2.  Lie groups and group actions ............................. 66
A.3.  Cohomology and invariant cohomology ...................... 69
A.4.  The group of diffeomorphisms ............................. 71

Bibliography ................................................... 75


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:22:44 2019. Размер: 6,735 bytes.
Посещение N 1515 c 18.10.2011