Preface ...................................................... XIII
1 Introduction ................................................. 1
2 Nanoparticle Systems and Experimental Optical Observables .... 9
2.1 Classification of Nanoparticle Systems ................. 10
2.2 Stability of Nanoparticle Systems ...................... 14
2.3 Extinction, Optical Density, and Scattering ............ 21
2.3.1 The Role of the Particle Material Data .......... 25
2.3.2 The Role of the Particle Size ................... 26
2.3.3 The Role of the Particle Shape .................. 29
2.3.4 The Role of the Particle Concentration .......... 33
2.3.4.1 Dilute Systems ......................... 33
2.3.4.2 Closely Packed Systems ................. 34
3 Interaction of Light with Matter - The Optical Material
Function .................................................... 37
3.1 Classical Description .................................. 37
3.1.1 The Harmonic Oscillator Model ................... 38
3.1.2 Extensions of the Harmonic Oscillator Model ..... 40
3.1.3 The Drude Dielectric Function ................... 41
3.2 Quantum Mechanical Concepts ............................ 42
3.2.1 The Hubbard Dielectric Function ................. 43
3.2.2 Interband Transitions ........................... 47
3.3 Tauc-Lorentz and OJL Models ............................ 50
3.4 Kramers-Kronig Relations and Penetration Depth ......... 52
4 Fundamentals of Light Scattering by an Obstacle ............. 55
4.1 Maxwell's Equations and the Helmholtz Equation ......... 56
4.2 Electromagnetic Fields ................................. 59
4.3 Boundary Conditions .................................... 61
4.4 Poynting's Law and Cross-sections ...................... 62
4.5 Far-Field and Near-Field ............................... 65
4.6 The Incident Electromagnetic Wave ...................... 66
4.7 Rayleigh's Approximation for Small Particles - The
Dipole Approximation ................................... 69
4.8 Rayleigh-Debye-Gans Approximation for Vanishing
Optical Contrast ....................................... 71
5 Mie's Theory for Single Spherical Particles ................. 75
5.1 Electromagnetic Fields and Boundary Conditions ......... 76
5.2 Cross-sections, Scattering Intensities, and Related
Quantities ............................................. 83
5.3 Resonances ............................................. 87
5.3.1 Geometric Resonances ............................ 88
5.3.2 Electronic Resonances and Surface Plasmon
Polaritons ...................................... 91
5.3.2.1 Electronic Resonances .................. 92
5.3.2.2 Surface Plasmon Polariton Resonances ... 94
5.3.2.3 Multiple Resonances ................... 101
5.3.3 Longitudinal Plasmon Resonances ................ 104
5.4 Optical Contrast ...................................... 108
5.5 Near-Field ............................................ 112
5.5.1 Some Further Details ........................... 122
6 Application of Mie's Theory ................................ 123
6.1 Drude Metal Particles (Al, Na, K) ..................... 124
6.2 Noble Metal Particles (Cu, Ag, Au) .................... 127
6.2.1 Calculations ................................... 127
6.2.2 Experimental Examples .......................... 129
6.2.2.1 Colloidal Au and Ag Suspensions ....... 129
6.2.2.2 Gold and Silver Nanoparticles in
Glass ................................. 131
6.2.2.3 Copper Nanoparticles in Glass and
Silica ................................ 132
6.2.2.4 AgxAu1-x Alloy Nanoparticles in
Photosensitive Glass .................. 134
6.2.2.5 Silver Aerosols ....................... 135
6.2.2.6 Further Experiments ................... 137
6.3 Catalyst Metal Particles (Pt, Pd, Rh) ................. 139
6.4 Magnetic Metal Particles (Fe, Ni, Co) ................. 141
6.5 Rare Earth Metal Particles (Sc, Y, Er) ................ 142
6.6 Transition Metal Particles (V, Nb, Та) ................ 145
6.7 Summary of Metal Particles ............................ 147
6.8 Semimetal Particles (TiN, ZrN) ........................ 148
6.9 Semiconductor Particles (Si, SiC, CdTe, ZnSe) ......... 151
6.9.1 Calculations ................................... 151
6.9.2 Experimental Examples .......................... 154
6.9.2.1 Si Nanoparticles in Polyacrylene ...... 154
6.9.2.2 Quantum Confinement in CdSe
Nanoparticles ......................... 154
6.10 Carbonaceous Particles ................................ 156
6.11 Absorbing Oxide Particles (Fe203, Cr203, Cu20, CuO) ... 162
6.11.1 Calculations ................................... 162
6.11.2 Experimental Examples .......................... 163
6.11.2.1 Aerosols of Fe203 ..................... 163
6.11.2.2 Aerosols of Cu20 and CuO .............. 165
6.11.2.3 Colloidal Ее2О3 nanoparticles ......... 167
6.12 Transparent Oxide Particles (Si02, A1203, Ce02,
Ti02) ................................................. 168
6.13 Particles with Phonon Polaritons (MgO, NaCl, CaF2) .... 170
6.14 Miscellaneous Nanoparticles (ITO, LaB6, EuS) .......... 172
7 Extensions of Mie's Theory ................................. 177
7.1 Coated Spheres ........................................ 177
7.1.1 Calculations ................................... 177
7.1.1.1 Metallic Shells on a Transparent
Core .................................. 180
7.1.1.2 Oxide Shells on Metal and
Semiconducting Core Particles ......... 184
7.1.2 Experimental Examples .......................... 187
7.1.2.1 Ag-Au and Au-Ag Core-Shell
Particles ............................. 187
7.1.2.2 Multishell Nanoparticles of Ag and
Au .................................... 189
7.1.2.3 Optical Bistability in Silver-Coated
CdS Nanoparticles ..................... 190
7.1.2.4 Ag and Au Aerosols with Salt Shells ... 193
7.1.2.5 Further Experiments ................... 196
7.2 Supported Nanoparticles ............................... 198
7.3 Charged Nanoparticles ................................. 206
7.4 Anisotropic Materials ................................. 210
7.4.1 Dichroism ...................................... 210
7.4.2 Field-Induced Anisotropy ....................... 211
7.4.3 Gradient-Index Materials ....................... 211
7.4.4 Optically Active Materials ..................... 213
7.5 Absorbing Embedding Media ............................. 214
7.5.1 Calculations ................................... 214
7.5.2 Experimental Examples .......................... 219
7.5.2.1 Absorption of Scattered Light in Ag
and Au Colloids ....................... 219
7.5.2.2 Ag and Fe Nanoparticles in Fullerene
Film .................................. 220
7.6 Inhomogeneous Incident Waves .......................... 223
7.6.1 Gaussian Beam Illumination ..................... 223
7.6.2 Evanescent Waves from Total Internal
Reflection ..................................... 226
8 Limitations of Mie's Theory-Size and Quantum Size Effects
in Very Small Nanoparticles ................................ 233
8.1 Boundary Conditions-the Spill-Out Effect .............. 233
8.2 Free Path Effect in Nanoparticles ..................... 234
8.3 Chemical Interface Damping-Dynamic Charge Transfer .... 240
9 Beyond Mie's Theory I-Nonspherical Particles ............... 245
9.1 Spheroids and Ellipsoids .............................. 247
9.1.1 Spheroids (Ellipsoids of Revolution) ........... 247
9.1.1.1 Electromagnetic Fields ................ 248
9.1.1.2 Scattering Coefficients ............... 251
9.1.1.3 Cross-sections ........................ 252
9.1.1.4 Resonances ............................ 252
9.1.1.5 Numerical Examples .................... 254
9.1.1.6 Extensions ............................ 254
9.1.2 Ellipsoids (Rayleigh Approximation) ............ 255
9.1.3 Numerical Examples for Ellipsoids .............. 259
9.1.3.1 Metal Particles ....................... 259
9.1.3.2 Semimetal and Semiconductor
Particles ............................. 265
9.1.3.3 Carbonaceous Particles ................ 266
9.1.3.4 Particles with Phonon Polaritons ...... 267
9.1.3.5 Miscellaneous Particles ............... 267
9.1.4 Experimental Results ........................... 268
9.1.4.1 Prolate Spheroidal Silver Particles
in Fourcault Glass .................... 268
9.1.4.2 Plasma Polymer Films with
Nonspherical Silver Particles ......... 269
9.1.4.3 Further Experiments ................... 272
9.2 Cylinders ............................................. 273
9.2.1 Electromagnetic Fields and Scattering
Coefficients ................................... 273
9.2.2 Efficiencies and Scattering Intensities ........ 277
9.2.3 Resonances ..................................... 279
9.2.4 Extensions ..................................... 281
9.2.5 Numerical Examples ............................. 282
9.2.5.1 Metal Particles ....................... 283
9.2.5.2 Semimetal and Semiconductor
Particles ............................. 288
9.2.5.3 Carbonaceous Particles ................ 291
9.2.5.4 Oxide Particles ....................... 292
9.2.5.5 Particles with Phonon Polaritons ...... 293
9.2.5.6 Miscellaneous Particles ............... 294
9.3 Cubic Particles ....................................... 296
9.3.1 Theoretical Considerations ..................... 296
9.3.2 Numerical Examples ............................. 298
9.3.2.1 Metal Particles ....................... 299
9.3.2.2 Semimetal and Semiconductor
Particles ............................. 299
9.3.2.3 Particles with Phonon Polaritons ...... 300
9.3.2.4 Miscellaneous Particles ............... 301
9.4 Numerical Methods ..................................... 302
9.4.1 Discrete Dipole Approximation .................. 302
9.4.2 T-Matrix Method or Extended Boundary
Condition Method ............................... 305
9.4.3 Other Numerical Methods ........................ 307
9.4.3.1 Point Matching Method ................. 307
9.4.3.2 Discretized Mie Formalism ............. 307
9.4.3.3 Generalized Multipole Technique ....... 307
9.4.3.4 Finite Difference Time Domain
Technique ............................. 307
9.5 Application of Numerical Methods to Nonspherical
Nanoparticles ......................................... 308
9.5.1 Nonmetallic Nanoparticles ...................... 308
9.5.2 Metallic Nanoparticles ......................... 310
10 Beyond Mie's Theory II-The Generalized Mie Theory .......... 317
10.1 Derivation of the Generalized Mie Theory .............. 318
10.2 Resonances ............................................ 321
10.3 Common Results ........................................ 325
10.3.1 Influence of Shape ............................. 325
10.3.2 Influence of Length ............................ 327
10.3.3 Influence of Interparticle Distance ............ 327
10.3.4 Enhancement of Scattering and Extinction ....... 329
10.3.5 The Problem of Convergence ..................... 331
10.4 Extensions of the Generalized Mie Theory .............. 335
10.4.1 Incident Beam .................................. 335
10.4.2 Nonspherical Particles ......................... 336
11 The Generalized Mie Theory Applied to Different Systems .... 341
11.1 Metal Particles ....................................... 342
11.1.1 Calculations ................................... 342
11.1.2 Experimental Results ........................... 346
11.1.2.1 Extinction of Light in Colloidal
Gold and Silver Systems ............... 346
11.1.2.2 Total Scattering of Light by
Aggregates ............................ 353
11.1.2.3 Angle-Resolved Light Scattering by
Nanoparticle Aggregates ............... 355
11.1.2.4 PTOBD on Aggregated Gold and Silver
Nanocomposites ........................ 358
11.1.2.5 Light-Induced van der Waals
Attraction ............................ 360
11.1.2.6 Coalescence of Nanoparticles .......... 361
11.1.2.7 Further Experiments with Gold and
Silver Nanoparticles .................. 363
11.2 Semimetal and Semiconductor Particles ................. 364
11.3 Nonabsorbing Dielectrics .............................. 367
11.4 Carbonaceous Particles ................................ 369
11.5 Particles with Phonon Polaritons ...................... 372
11.6 Miscellaneous Particles ............................... 375
11.7 Aggregates of Nanoparticles of Different Materials .... 376
11.8 Optical Particle Sizing ............................... 379
11.9 Stochastically Distributed Spheres .................... 382
11.10 Aggregates of Spheres and Numerical Methods .......... 387
11.10.1 Applications of the Discrete Dipole
Approximation ................................. 387
11.10.2 Applications of the T-Matrix approach ......... 389
11.10.3 Other Methods ................................. 389
12 Densely Packed Systems ..................................... 393
12.1 The Two-Flux Theory of Kubelka and Munk ............... 394
12.2 Applications of the Kubelka-Munk Theory ............... 397
12.2.1 Dense Systems of Color Pigments: Cr203,
Fe2O3, and Cu2O ................................ 398
12.2.2 Dense Systems of White Pigments: Si02 and
Ti02 ........................................... 399
12.2.3 Dense Systems of ZrN and TiN Nanoparticles ..... 400
12.2.4 Dense Systems of Silicon Nanoparticles ......... 401
12.2.5 Dense Systems of IR Absorbers: ITO and LaB6 .... 403
12.2.6 Dense Systems of Noble Metals: Ag and Au ....... 404
12.2.7 The Lycurgus Cup ............................... 406
12.3 Improvements of the Kubelka-Munk Theory ............... 407
13 Near-Field and SERS ........................................ 411
13.1 Waveguiding Along Particle Chains ..................... 412
13.2 Scanning Near-Field Optical Microscopy ................ 416
13.3 SERS with Aggregates .................................. 420
14 Effective Medium Theories .................................. 427
14.1 Theoretical Results for Dielectric Nanoparticle
Composites ............................................ 431
14.2 Theoretical Results for Metal Nanoparticle
Composites ............................................ 433
14.3 Experimental Examples ................................. 437
References .................................................... 441
Color Plates .................................................. 479
Index ......................................................... 485
|