Quinten M. Optical properties of nanoparticle systems: Mie and beyond (Weinheim, 2011). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаQuinten M. Optical properties of nanoparticle systems: Mie and beyond. - Weinheim: Wiley-VCH, 2011. - xiv, 488 p.: ill. - Ref.: p.441-477. - Ind.: p.485-488. - ISBN 978-3-527-41043-9
 

Оглавление / Contents
 
Preface ...................................................... XIII

1  Introduction ................................................. 1
2  Nanoparticle Systems and Experimental Optical Observables .... 9
   2.1  Classification of Nanoparticle Systems ................. 10
   2.2  Stability of Nanoparticle Systems ...................... 14
   2.3  Extinction, Optical Density, and Scattering ............ 21
        2.3.1  The Role of the Particle Material Data .......... 25
        2.3.2  The Role of the Particle Size ................... 26
        2.3.3  The Role of the Particle Shape .................. 29
        2.3.4  The Role of the Particle Concentration .......... 33
               2.3.4.1  Dilute Systems ......................... 33
               2.3.4.2  Closely Packed Systems ................. 34
3  Interaction of Light with Matter - The Optical Material
   Function .................................................... 37
   3.1  Classical Description .................................. 37
        3.1.1  The Harmonic Oscillator Model ................... 38
        3.1.2  Extensions of the Harmonic Oscillator Model ..... 40
        3.1.3  The Drude Dielectric Function ................... 41
   3.2  Quantum Mechanical Concepts ............................ 42
        3.2.1  The Hubbard Dielectric Function ................. 43
        3.2.2  Interband Transitions ........................... 47
   3.3  Tauc-Lorentz and OJL Models ............................ 50
   3.4  Kramers-Kronig Relations and Penetration Depth ......... 52
4  Fundamentals of Light Scattering by an Obstacle ............. 55
   4.1  Maxwell's Equations and the Helmholtz Equation ......... 56
   4.2  Electromagnetic Fields ................................. 59
   4.3  Boundary Conditions .................................... 61
   4.4  Poynting's Law and Cross-sections ...................... 62
   4.5  Far-Field and Near-Field ............................... 65
   4.6  The Incident Electromagnetic Wave ...................... 66
   4.7  Rayleigh's Approximation for Small Particles - The
        Dipole Approximation ................................... 69
   4.8  Rayleigh-Debye-Gans Approximation for Vanishing
        Optical Contrast ....................................... 71
5  Mie's Theory for Single Spherical Particles ................. 75
   5.1  Electromagnetic Fields and Boundary Conditions ......... 76
   5.2  Cross-sections, Scattering Intensities, and Related
        Quantities ............................................. 83
   5.3  Resonances ............................................. 87
        5.3.1  Geometric Resonances ............................ 88
        5.3.2  Electronic Resonances and Surface Plasmon
               Polaritons ...................................... 91
               5.3.2.1  Electronic Resonances .................. 92
               5.3.2.2  Surface Plasmon Polariton Resonances ... 94
               5.3.2.3  Multiple Resonances ................... 101
        5.3.3  Longitudinal Plasmon Resonances ................ 104
   5.4  Optical Contrast ...................................... 108
   5.5  Near-Field ............................................ 112
        5.5.1  Some Further Details ........................... 122
6  Application of Mie's Theory ................................ 123
   6.1  Drude Metal Particles (Al, Na, K) ..................... 124
   6.2  Noble Metal Particles (Cu, Ag, Au) .................... 127
        6.2.1  Calculations ................................... 127
        6.2.2  Experimental Examples .......................... 129
               6.2.2.1  Colloidal Au and Ag Suspensions ....... 129
               6.2.2.2  Gold and Silver Nanoparticles in
                        Glass ................................. 131
               6.2.2.3  Copper Nanoparticles in Glass and
                        Silica ................................ 132
               6.2.2.4  AgxAu1-x Alloy Nanoparticles in
                        Photosensitive Glass .................. 134
               6.2.2.5  Silver Aerosols ....................... 135
               6.2.2.6  Further Experiments ................... 137
   6.3  Catalyst Metal Particles (Pt, Pd, Rh) ................. 139
   6.4  Magnetic Metal Particles (Fe, Ni, Co) ................. 141
   6.5  Rare Earth Metal Particles (Sc, Y, Er) ................ 142
   6.6  Transition Metal Particles (V, Nb, Та) ................ 145
   6.7  Summary of Metal Particles ............................ 147
   6.8  Semimetal Particles (TiN, ZrN) ........................ 148
   6.9  Semiconductor Particles (Si, SiC, CdTe, ZnSe) ......... 151
        6.9.1  Calculations ................................... 151
        6.9.2  Experimental Examples .......................... 154
               6.9.2.1  Si Nanoparticles in Polyacrylene ...... 154
               6.9.2.2  Quantum Confinement in CdSe
                        Nanoparticles ......................... 154
   6.10 Carbonaceous Particles ................................ 156
   6.11 Absorbing Oxide Particles (Fe203, Cr203, Cu20, CuO) ... 162
        6.11.1 Calculations ................................... 162
        6.11.2 Experimental Examples .......................... 163
               6.11.2.1 Aerosols of Fe203 ..................... 163
               6.11.2.2 Aerosols of Cu20 and CuO .............. 165
               6.11.2.3 Colloidal Ее2О3 nanoparticles ......... 167
   6.12 Transparent Oxide Particles (Si02, A1203, Ce02,
        Ti02) ................................................. 168
   6.13 Particles with Phonon Polaritons (MgO, NaCl, CaF2) .... 170
   6.14 Miscellaneous Nanoparticles (ITO, LaB6, EuS) .......... 172
7  Extensions of Mie's Theory ................................. 177
   7.1  Coated Spheres ........................................ 177
        7.1.1  Calculations ................................... 177
               7.1.1.1  Metallic Shells on a Transparent
                        Core .................................. 180
               7.1.1.2  Oxide Shells on Metal and
                        Semiconducting Core Particles ......... 184
        7.1.2  Experimental Examples .......................... 187
               7.1.2.1  Ag-Au and Au-Ag Core-Shell
                        Particles ............................. 187
               7.1.2.2  Multishell Nanoparticles of Ag and
                        Au .................................... 189
               7.1.2.3  Optical Bistability in Silver-Coated
                        CdS Nanoparticles ..................... 190
               7.1.2.4  Ag and Au Aerosols with Salt Shells ... 193
               7.1.2.5  Further Experiments ................... 196
   7.2  Supported Nanoparticles ............................... 198
   7.3  Charged Nanoparticles ................................. 206
   7.4  Anisotropic Materials ................................. 210
        7.4.1  Dichroism ...................................... 210
        7.4.2  Field-Induced Anisotropy ....................... 211
        7.4.3  Gradient-Index Materials ....................... 211
        7.4.4  Optically Active Materials ..................... 213
   7.5  Absorbing Embedding Media ............................. 214
        7.5.1  Calculations ................................... 214
        7.5.2  Experimental Examples .......................... 219
               7.5.2.1  Absorption of Scattered Light in Ag
                        and Au Colloids ....................... 219
               7.5.2.2  Ag and Fe Nanoparticles in Fullerene
                        Film .................................. 220
   7.6  Inhomogeneous Incident Waves .......................... 223
        7.6.1  Gaussian Beam Illumination ..................... 223
        7.6.2  Evanescent Waves from Total Internal
               Reflection ..................................... 226
8  Limitations of Mie's Theory-Size and Quantum Size Effects
   in Very Small Nanoparticles ................................ 233
   8.1  Boundary Conditions-the Spill-Out Effect .............. 233
   8.2  Free Path Effect in Nanoparticles ..................... 234
   8.3  Chemical Interface Damping-Dynamic Charge Transfer .... 240
9  Beyond Mie's Theory I-Nonspherical Particles ............... 245
   9.1  Spheroids and Ellipsoids .............................. 247
        9.1.1  Spheroids (Ellipsoids of Revolution) ........... 247
               9.1.1.1  Electromagnetic Fields ................ 248
               9.1.1.2  Scattering Coefficients ............... 251
               9.1.1.3  Cross-sections ........................ 252
               9.1.1.4  Resonances ............................ 252
               9.1.1.5  Numerical Examples .................... 254
               9.1.1.6  Extensions ............................ 254
        9.1.2  Ellipsoids (Rayleigh Approximation) ............ 255
        9.1.3  Numerical Examples for Ellipsoids .............. 259
               9.1.3.1  Metal Particles ....................... 259
               9.1.3.2  Semimetal and Semiconductor
                        Particles ............................. 265
               9.1.3.3  Carbonaceous Particles ................ 266
               9.1.3.4  Particles with Phonon Polaritons ...... 267
               9.1.3.5  Miscellaneous Particles ............... 267
        9.1.4  Experimental Results ........................... 268
               9.1.4.1  Prolate Spheroidal Silver Particles
                        in Fourcault Glass .................... 268
               9.1.4.2  Plasma Polymer Films with
                        Nonspherical Silver Particles ......... 269
               9.1.4.3  Further Experiments ................... 272
   9.2  Cylinders ............................................. 273
        9.2.1  Electromagnetic Fields and Scattering
               Coefficients ................................... 273
        9.2.2  Efficiencies and Scattering Intensities ........ 277
        9.2.3  Resonances ..................................... 279
        9.2.4  Extensions ..................................... 281
        9.2.5  Numerical Examples ............................. 282
               9.2.5.1  Metal Particles ....................... 283
               9.2.5.2  Semimetal and Semiconductor
                        Particles ............................. 288
               9.2.5.3  Carbonaceous Particles ................ 291
               9.2.5.4  Oxide Particles ....................... 292
               9.2.5.5  Particles with Phonon Polaritons ...... 293
               9.2.5.6  Miscellaneous Particles ............... 294
   9.3  Cubic Particles ....................................... 296
        9.3.1  Theoretical Considerations ..................... 296
        9.3.2  Numerical Examples ............................. 298
               9.3.2.1  Metal Particles ....................... 299
               9.3.2.2  Semimetal and Semiconductor
                        Particles ............................. 299
               9.3.2.3  Particles with Phonon Polaritons ...... 300
               9.3.2.4  Miscellaneous Particles ............... 301
   9.4  Numerical Methods ..................................... 302
        9.4.1  Discrete Dipole Approximation .................. 302
        9.4.2  T-Matrix Method or Extended Boundary
               Condition Method ............................... 305
        9.4.3  Other Numerical Methods ........................ 307
               9.4.3.1  Point Matching Method ................. 307
               9.4.3.2  Discretized Mie Formalism ............. 307
               9.4.3.3  Generalized Multipole Technique ....... 307
               9.4.3.4  Finite Difference Time Domain
                        Technique ............................. 307
   9.5  Application of Numerical Methods to Nonspherical
        Nanoparticles ......................................... 308
        9.5.1  Nonmetallic Nanoparticles ...................... 308
        9.5.2  Metallic Nanoparticles ......................... 310
10 Beyond Mie's Theory II-The Generalized Mie Theory .......... 317
   10.1 Derivation of the Generalized Mie Theory .............. 318
   10.2 Resonances ............................................ 321
   10.3 Common Results ........................................ 325
        10.3.1 Influence of Shape ............................. 325
        10.3.2 Influence of Length ............................ 327
        10.3.3 Influence of Interparticle Distance ............ 327
        10.3.4 Enhancement of Scattering and Extinction ....... 329
        10.3.5 The Problem of Convergence ..................... 331
   10.4 Extensions of the Generalized Mie Theory .............. 335
        10.4.1 Incident Beam .................................. 335
        10.4.2 Nonspherical Particles ......................... 336
11 The Generalized Mie Theory Applied to Different Systems .... 341
   11.1 Metal Particles ....................................... 342
        11.1.1 Calculations ................................... 342
        11.1.2 Experimental Results ........................... 346
               11.1.2.1 Extinction of Light in Colloidal
                        Gold and Silver Systems ............... 346
               11.1.2.2 Total Scattering of Light by
                        Aggregates ............................ 353
               11.1.2.3 Angle-Resolved Light Scattering by
                        Nanoparticle Aggregates ............... 355
               11.1.2.4 PTOBD on Aggregated Gold and Silver
                        Nanocomposites ........................ 358
               11.1.2.5 Light-Induced van der Waals
                        Attraction ............................ 360
               11.1.2.6 Coalescence of Nanoparticles .......... 361
               11.1.2.7 Further Experiments with Gold and
                        Silver Nanoparticles .................. 363
   11.2 Semimetal and Semiconductor Particles ................. 364
   11.3 Nonabsorbing Dielectrics .............................. 367
   11.4 Carbonaceous Particles ................................ 369
   11.5 Particles with Phonon Polaritons ...................... 372
   11.6 Miscellaneous Particles ............................... 375
   11.7 Aggregates of Nanoparticles of Different Materials .... 376
   11.8 Optical Particle Sizing ............................... 379
   11.9 Stochastically Distributed Spheres .................... 382
   11.10 Aggregates of Spheres and Numerical Methods .......... 387
        11.10.1 Applications of the Discrete Dipole
                Approximation ................................. 387
        11.10.2 Applications of the T-Matrix approach ......... 389
        11.10.3 Other Methods ................................. 389
12 Densely Packed Systems ..................................... 393
   12.1 The Two-Flux Theory of Kubelka and Munk ............... 394
   12.2 Applications of the Kubelka-Munk Theory ............... 397
        12.2.1 Dense Systems of Color Pigments: Cr203,
               Fe2O3, and Cu2O ................................ 398
        12.2.2 Dense Systems of White Pigments: Si02 and
               Ti02 ........................................... 399
        12.2.3 Dense Systems of ZrN and TiN Nanoparticles ..... 400
        12.2.4 Dense Systems of Silicon Nanoparticles ......... 401
        12.2.5 Dense Systems of IR Absorbers: ITO and LaB6 .... 403
        12.2.6 Dense Systems of Noble Metals: Ag and Au ....... 404
        12.2.7 The Lycurgus Cup ............................... 406
   12.3 Improvements of the Kubelka-Munk Theory ............... 407
13 Near-Field and SERS ........................................ 411
   13.1 Waveguiding Along Particle Chains ..................... 412
   13.2 Scanning Near-Field Optical Microscopy ................ 416
   13.3 SERS with Aggregates .................................. 420
14 Effective Medium Theories .................................. 427
   14.1 Theoretical Results for Dielectric Nanoparticle
        Composites ............................................ 431
   14.2 Theoretical Results for Metal Nanoparticle
        Composites ............................................ 433
   14.3 Experimental Examples ................................. 437

References .................................................... 441

Color Plates .................................................. 479

Index ......................................................... 485


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:22:42 2019. Размер: 20,918 bytes.
Посещение N 1932 c 11.10.2011