Ijaz M. Computational Fluid Dynamics: A High-Order Temporal Discretization Method (Saarbrucken, 2010). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаIjaz M. Computational Fluid Dynamics: A High-Order Temporal Discretization Method. - Saarbrücken: VDM Verlag Dr. Müller, 2010. - x, 106 p.: ill. - ISBN 978-3-639-21171-9
 

Оглавление / Contents
 
DEDICATION ...................................................... i
NOMENCLATURE ................................................... ii
TABLE OF CONTENTS ............................................... v
LIST OF FIGURES .............................................. viii

1  INTRODUCTION ................................................. 1
2  EARLIER WORK ON TEMPORAL DISCRETIZATION ...................... 4
3  CHOICE OF TEMPORAL DISCRETIZATION METHOD USED IN THIS BOOK ... 9
4  NUMERICAL METHOD ............................................ 12
   4.1  Model Equations ........................................ 12
   4.2  Staggered Grid Approach ................................ 14
        4.2.1  Spatial Discretization .......................... 14
               4.2.1a  Mass Conservation Equation .............. 16
               4.2.1b  Momentum Conservation Equations ......... 16
        4.2.2  Temporal Discretization ......................... 20
        4.2.3  Simultaneous Solution of Mass Conservation and
               Momentum Conservation Equations ................. 23
               4.2.3a  Evaluation of CV Face Velocities ........ 25
               4.2.3b  Correcting Velocity and Pressure
                       Fields by enforcing Mass Conservation ... 25
               4.2.3c  Under-relaxation ........................ 28
               4.2.3d  Convergence Criteria .................... 29
               4.2.3e  Algorithm ............................... 30
   4.3  Non-staggered Grid Approach (or Co-located Variables
        Approach) .............................................. 34
        4.3.1  Spatial Discretization .......................... 34
               4.3.1a  Mass Conservation Equation .............. 34
               4.3.1b  Momentum Conservation Equations ......... 35
        4.3.2  Temporal Discretization ......................... 37
        4.3.3  Simultaneous Solution of Mass Conservation and
               Momentum Conservation Equations ................. 39
               4.3.3a  Evaluation of CV Face Velocities ........ 39
               4.3.3b  Correcting Velocity and Pressure
                       Fields by enforcing Mass Conservation ... 43
               4.3.3c  Under-relaxation ........................ 47
               4.3.3d  Convergence Criteria .................... 48
               4.3.3e  Algorithm ............................... 49
5  VALIDATION .................................................. 53
   5.1  Test Case .............................................. 53
   5.2  Grid Dependence Study .................................. 54
   5.3  Code Validation Runs ................................... 56
        5.3.1  Comparison of the Staggered Grid Code with
               FLUENT for Re = 400 ............................. 56
        5.3.2  Comparison of the Staggered Grid Code with the
               Results of Erturk et al. [6] for Re = 1,000 ..... 56
        5.3.3  Comparison  of the  Non-staggered Grid Code
               with the Staggered Grid Code for Re = 400 ....... 57
6  RESULTS AND DISCUSSION ...................................... 58
7  SUMMARY ..................................................... 78
8  RECOMMENDATIONS FOR FUTURE WORK ............................. 79
   REFERENCES .................................................. 80

APPENDIX A: RUNGE-KUTTA METHODS ................................ 87
   A1  General Form of Runge-Kutta Methods ..................... 88
   A2  Explicit Runge-Kutta Methods ............................ 90
   A3  Diagonally Implicit Runge-Kutta (DIRK) Methods .......... 90
   A4  Singly Diagonally Implicit Runge-Kutta (SDIRK)
       Methods ................................................. 91
   A5  Explicit first stage, Single diagonal coefficient,
       Diagonally Implicit, Runge-Kutta (ESDIRK) Methods ....... 91
   A6  Stiffly Accurate Runge-Kutta Methods .................... 92

APPENDIX B: TWO EXAMPLES OF EVALUATION OF DEFERRED-
   CORRECTION TERM AND COEFFICIENTS IN THE DISCRETIZED
   MOMENTUM EQUATIONS .......................................... 93
   Bl  Power Law Scheme ........................................ 93
   B2  QUICK Scheme ............................................ 96

APPENDIX C: FORMULATION FOR SIMPLE DIRK METHOD USING A
   FOUR-STAGE ESDIRK METHOD ................................... 100
   CI  Staggered Grid Approach
   C2  Non-staggered Grid Approach

APPENDIX D: LIST OF REFERENCES AS QUOTED BY BUTCHER [72]
   AND/OR BUTCHER AND WANNER [73] ............................. 105
   ACKNOWLEDGEMENT ............................................ 106


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:22:42 2019. Размер: 8,348 bytes.
Посещение N 1761 c 11.10.2011