Gratzer G. The congruences of a finite lattice: a proof-by-picture approach (Boston; Basel, 2006). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаGrätzer G. The congruences of a finite lattice: a proof-by-picture approach. - Boston; Basel: Birkhauser, 2006. - xxii, 281 p.: ill. - Bibliogr.: p.265-273. - Ind.: p.244-281. - ISBN 0-8176-3224-7
 

Оглавление / Contents
 
Preface ..................................................... xiii
Glossary of Notation ......................................... xix
Picture Gallery ............................................ xxiii
Acknowledgments .............................................. xxv

I  A Brief Introduction to Lattices ............................ 1

1  Basic Concepts .............................................. 3
   1.1  Ordering ............................................... 3
        1.1.1  Orders .......................................... 3
        1.1.2  Diagrams ........................................ 5
        1.1.3  Order constructions ............................. 5
        1.1.4  Partitions ...................................... 6
   1.2  Lattices and semilattices .............................. 8
        1.2.1  Lattices ........................................ 8
        1.2.2  Semilattices and closure systems ............... 10
   1.3  Some algebraic concepts ............................... 12
        1.3.1  Homomorphisms .................................. 12
        1.3.2  Sublattices .................................... 13
        1.3.3  Congruences .................................... 14
2  Special Concepts ........................................... 19
   2.1  Elements and lattices ................................. 19
   2.2  Direct and subdirect products ......................... 20
   2.3  Polynomials and identities ............................ 23
   2.4  Gluing ................................................ 26
   2.5  Modular and distributive lattices ..................... 30
        2.5.1  The characterization theorems .................. 30
        2.5.2  Finite distributive lattices ................... 31
        2.5.3  Finite modular lattices ........................ 32
3  Congruences ................................................ 35
   3.1  Congruence spreading .................................. 35
   3.2  Prime intervals ....................................... 37
   3.3  Congruence-preserving extensions and variants ......... 39

II  Basic Techniques .......................................... 45

4  Chopped Lattices ........................................... 47
   4.1  Basic definitions ..................................... 47
   4.2  Compatible vectors of elements ........................ 49
   4.3  Compatible vectors of congruences ..................... 50
   4.4  From the chopped lattice to the ideal lattice ......... 52
   4.5  Sectional complementation ............................. 53
5  Boolean Triples ............................................ 57
   5.1  The general construction .............................. 57
   5.2  The congruence-preserving extension property .......... 60
   5.3  The distributive case ................................. 62
   5.4  Two interesting intervals ............................. 63
6  Cubic Extensions ........................................... 71
   6.1  The construction ...................................... 71
   6.2  The basic property .................................... 73

III  Representation Theorems .................................. 77

7  The Dilworth Theorem ....................................... 79
   7.1  The representation theorem ............................ 79
   7.2  Proof-by-Picture ...................................... 80
   7.3  Computing ............................................. 82
   7.4  Sectionally complemented lattices ..................... 83
   7.5  Discussion ............................................ 85
8  Minimal Representations .................................... 93
   8.1  The results ........................................... 93
   8.2  Proof-by-Picture for minimal construction ............. 94
   8.3  The formal construction ............................... 95
   8.4  Proof-by-Picture for minimality ....................... 97
   8.5  Computing minimality .................................. 99
   8.6  Discussion ........................................... 100
9  Semimodular Lattices ...................................... 105
   9.1  The representation theorem ........................... 105
   9.2  Proof-by-Picture ..................................... 106
   9.3  Construction and proof ............................... 107
   9.4  Discussion ........................................... 114
10 Modular Lattices .......................................... 115
   10.1 The representation theorem ........................... 115
   10.2 Proof-by-Picture ..................................... 116
   10.3 Construction and proof ............................... 120
   10.4 Discussion ........................................... 125
11 Uniform Lattices .......................................... 129
   11.1 The representation theorem ........................... 129
   11.2 Proof-by-Picture ..................................... 129
   11.3 The lattice N(A, B) .................................. 132
   11.4 Formal proof ......................................... 137
   11.5 Discussion ........................................... 139

IV Extensions ................................................ 143

12 Sectionally Complemented Lattices ......................... 145
   12.1 The extension theorem ................................ 145
   12.2 Proof-by-Picture ..................................... 146
   12.3 Simple extensions .................................... 148
   12.4 Formal proof ......................................... 150
   12.5 Discussion ........................................... 152
13 Semimodular Lattices ...................................... 153
   13.1 The extension theorem ................................ 153
   13.2 Proof-by-Picture ..................................... 153
   13.3 The conduit .......................................... 156
   13.4 The construction ..................................... 157
   13.5 Formal proof ......................................... 159
   13.6 Discussion ........................................... 159
14 Isoform Lattices .......................................... 161
   14.1 The result ........................................... 161
   14.2 Proof-by-Picture ..................................... 161
   14.3 Formal construction .................................. 165
   14.4 The congruences ...................................... 171
   14.5 The isoform property ................................. 172
   14.6 Discussion ........................................... 173
15 Independence Theorems ..................................... 177
   15.1 Results .............................................. 177
   15.2 Proof-by-Picture ..................................... 178
        15.2.1 Frucht lattices ............................... 178
        15.2.2 An automorphism-preserving simple extension ... 179
        15.2.3 A congruence-preserving rigid extension ....... 180
        15.2.4 Merging the two extensions .................... 181
        15.2.5 The representation theorems ................... 182
   15.3 Formal proofs ........................................ 183
        15.3.1 An automorphism-preserving simple extension ... 183
        15.3.2 A congruence-preserving rigid extension ....... 185
        15.3.3 Proof of the independence theorems ............ 185
   15.4 Discussion ........................................... 187
16 Magic Wands ............................................... 189
   16.1 Constructing congruence lattices ..................... 189
        16.1.1 Bijective maps ................................ 189
        16.1.2 Surjective maps ............................... 190
   16.2 Proof-by-Picture for bijective maps .................. 191
   16.3 Verification for bijective maps ...................... 194
   16.4 2/3-boolean triples .................................. 198
   16.5 Proof-by-Picture for surjective maps ................. 204
   16.6 Verification for surjective maps ..................... 206
   16.7 Discussion ........................................... 207

V  Two Lattices .............................................. 213

17 Sublattices ............................................... 215
   17.1 The results .......................................... 215
   17.2 Proof-by-Picture ..................................... 217
   17.3 Multi-coloring ....................................... 219
   17.4 Formal proof ......................................... 220
   17.5 Discussion ........................................... 221
18 Ideals .................................................... 227
   18.1 The results .......................................... 227
   18.2 Proof-by-Picture for the main result ................. 228
   18.3 A very formal proof: Main result ..................... 230
        18.3.1 Categoric preliminaries ....................... 230
        18.3.2 From fig.1 ................................ 232
        18.3.3 From fig.2 ................................ 232
        18.3.4 From fig.5 ................................. 233
        18.3.5 From fig.3 ................................ 234
        18.3.6 From fig.4 ................................ 237
        18.3.7 The final step ................................ 237
   18.4 Proof for sectionally complemented lattices .......... 238
   18.5 Proof-by-Picture for planar lattices ................. 241
   18.6 Discussion ........................................... 242
19 Tensor Extensions ......................................... 245
   19.1 The problem .......................................... 245
   19.2 Three unary functions ................................ 246
   19.3 Defining tensor extensions ........................... 248
   19.4 Computing ............................................ 250
        19.4.1 Some special elements ......................... 250
        19.4.2 An embedding .................................. 252
        19.4.3 Distributive lattices ......................... 253
   19.5 Congruences .......................................... 254
        19.5.1 Congruence spreading .......................... 254
        19.5.2 Some structural observations .................. 257
        19.5.3 Lifting congruences ........................... 259
        19.5.4 The main lemma ................................ 261
   19.6 The congruence isomorphism ........................... 262
   19.7 Discussion ........................................... 263
   Bibliography .............................................. 265

Index ........................................................ 275


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:22:42 2019. Размер: 14,802 bytes.
Посещение N 1818 c 11.10.2011