Preface ........................................................ xv
Acknowledgements ............................................. xvii
Contributors .................................................. xix
Abbreviations ............................................... xxiii
1 Noncovalent Functionalization of Carbon Nanotubes ............ 1
Claudia Backes and Andreas Hirsch
1.1 Introduction ............................................ 1
1.2 Overview of Functionalization Methods ................... 2
1.3 The Noncovalent Approach ................................ 3
1.3.1 Dispersability of Carbon Nanotubes ............... 3
1.3.2 The Role of Noncovalent Functionalization in
Nanotube Separation ............................. 26
1.4 Conclusion ............................................. 35
References .................................................. 35
2 Supramolecular Assembly of Fullerenes and Carbon Nanotubes
Hybrids ..................................................... 49
Ma Ángeles Herranz, Beatriz M. Illescas, Emilio M. Perez
and Nazario Martin
2.1 Introduction ........................................... 49
2.2 Hydrogen Bonded C60* Donor Ensembles ................... 50
2.3 Concave exTTF Derivatives as Recognizing Motifs for
Fullerene .............................................. 56
2.4 Noncovalent Functionalization of Carbon Nanotubes ...... 61
2.5 Summary and Outlook .................................... 67
Acknowledgements ............................................ 68
References .................................................. 68
3 Properties of Fullerene-Containing Dendrimers ............... 73
Juan-José Cid Martin and Jean-François Nierengarten
3.1 Introduction ........................................... 73
3.2 Dendrimers with a Fullerene Core ....................... 74
3.2.1 A Fullerene Core to Probe Dendritic Shielding
Effects ......................................... 74
3.2.2 Light Harvesting Dendrimers with a Fullerene
Core ............................................ 77
3.3 Fullerene-Rich Dendrimers .............................. 79
3.4 Conclusions ............................................ 89
Acknowledgements ............................................ 89
References .................................................. 89
4 Novel Electron Donor Acceptor Nanocomposites ................ 93
Hiroshi Imahori, Dirk M. Guldi and Shunichi Fukuzumi
4.1 Introduction ........................................... 93
4.2 Electron Donor-Fullerene Composites .................... 94
4.2.1 General ......................................... 94
4.2.2 Donor-Fullerene Dyads for Photoinduced
Electron Transfer ............................... 94
4.2.3 Donor-Fullerene Linked Multicomponent Systems ... 96
4.2.4 Supramolecular Donor-Fullerene Systems .......... 96
4.2.5 Photoelectrochemical Devices and Solar Cells .... 99
4.3 Carbon Nanotubes ...................................... 106
4.3.1 General ........................................ 106
4.3.2 Carbon Nanotube - Electron Donor Acceptor
Conjugates ..................................... 108
4.3.3 Carbon Nanotube - Electron Donor Acceptor
Hybrids ........................................ 113
4.4 Other Nanocarbon Composites ........................... 116
References ................................................. 117
5 Higher Fullerenes: Chirality and Covalent Adducts .......... 129
Agnieszka Kraszewska, François Diederich and Carlo
Thilgen
5.1 Introduction .......................................... 129
5.1.1 Fullerene Chirality - Classification and the
Stereodescriptor System ........................ 130
5.1.2 Reactivity and Regioselectivity ................ 131
5.2 The Chemistry of C70 .................................. 132
5.2.1 C70-Derivatives with an Inherently Chiral
Functionalization Pattern ...................... 132
5.2.2 C70-Derivatives with a Non-Inherently Chiral
Functionalization Pattern ...................... 148
5.2.3 Fullerene Derivatives with Stereogenic
Centers in the Addends ......................... 152
5.3 The Higher Fullerenes Beyond C70 ...................... 152
5.3.1 Isolated and Structurally Assigned Higher
Fullerenes ..................................... 152
5.3.2 Inherently Chiral Fullerenes - Chiral
Scaffolds ...................................... 153
5.4 Concluding Remarks .................................... 162
Acknowledgement ............................................ 163
References ................................................. 163
6 Application of Fullerenes to Nanodevices ................... 173
Yutaka Matsuo and Eiichi Nakamura
6.1 Introduction .......................................... 173
6.2 Synthesis of Transition Metal Fullerene Complexes ..... 174
6.3 Organometallic Chemistry of Metal Fullerene
Complexes ............................................. 176
6.4 Synthesis of Multimetal Fullerene Complexes ........... 177
6.5 Supramolecular Structures of Penta(organo)
[60]fullerene Derivatives ............................. 179
6.6 Reduction of Penta(organo)[60]fullerenes to Generate
Polyanions ............................................ 179
6.7 Photoinduced Charge Separation ........................ 180
6.8 Photocurrent-Generating Organic and Organometallic
Fullerene Derivatives ................................. 181
6.8.1 Attaching Legs to Fullerene Metal Complexes .... 181
6.8.2 Formation of Self-Assembled Monomolecular
Films .......................................... 182
6.8.3 Photoelectric Current Generation Function of
Lunar Lander-Type Molecules .................... 183
6.9 Conclusion ............................................ 185
References ................................................. 185
7 Supramolecular Chemistry of Fullerenes: Host Molecules
for Fullerenes on the Basis of ir-ir Interaction ........... 189
Takeshi Kawase
7.1 Introduction .......................................... 189
7.2 Fullerenes as an Electron Acceptor .................... 190
7.3 Host Molecules Composed of Aromatic Π-systems ......... 192
7.3.1 Hydrocarbon Hosts .............................. 192
7.3.2 Hosts Composed of Electron Rich Aromatic
Π-Systems ..................................... 194
7.3.3 Host Molecules Bearing Appendants .............. 195
7.3.4 Host Molecules with Dimeric or Polymeric
Structures ..................................... 197
7.4 Complexes with Host Molecules Based on Porphyrin Π
Systems ............................................... 199
7.4.1 Hosts with a Porphyrin Π System ................ 199
7.4.2 Hosts with Two Porphyrin Π Systems ............. 200
7.5 Complexes with Host Molecules Bearing a Cavity
Consisting of Curved Π System ......................... 203
7.5.1 Host with a Concave Structure .................. 203
7.5.2 Complexes with Host Molecules Bearing
a Cylindrical Cavity ........................... 204
7.6 The Nature of the Supramolecular Property of
Fullerenes ............................................ 208
References ................................................. 208
8 Molecular Surgery toward Organic Synthesis of Endohedral
Fullerenes ................................................. 215
Michihisa Murata, Yasujiro Murata and Koichi Komatsu
8.1 Introduction .......................................... 215
8.2 Molecular-Surgery Synthesis of Endohedral C60
Encapsulating Molecular Hydrogen ...................... 216
8.2.1 Cage Opening ................................... 216
8.2.2 Encapsulation of a H2 Molecule ................. 219
8.2.3 Encapsulation of a He Atom ..................... 219
8.2.4 Closure of the Opening ......................... 220
8.3 Chemical Functionalization of H2 and C60 .............. 222
8.4 Utilization of the Encapsulated H2 as an NMR Probe .... 224
8.5 Physical Properties of an Encapsulated H2 in C60 ...... 226
8.6 Molecular-Surgery Synthesis of Endohedral C70
Encapsulating Molecular Hydrogen ...................... 227
8.6.1 Synthesis of (H2)2 and C70 and H2 and C70 ........ 227
8.6.2 Diels-Alder Reaction of (H2)2 and C70 and H2
and C70 ........................................ 231
8.7 Outlook ............................................... 233
References ................................................. 233
9 New Endohedral Metallofullerenes: Trimetallic Nitride
Endohedral Fullerenes ...................................... 239
Marilyn M. Olmstead, Alan L. Balch, Julio R. Pinzón, Luis
Echegoyen, Harry W. Gibson and Harry C. Dorn
9.1 Discovery, Preparation, and Purification .............. 239
9.2 Structural Studies .................................... 240
9.2.1 Cycloaddition Reactions ........................ 246
9.2.2 Free Radical and Nucleophilic Addition
Reactions ...................................... 250
9.2.3 Electrochemistry Studies of TNT-EMFs ........... 252
9.3 Summary and Conclusions ............................... 254
References ................................................. 254
10 Recent Progress in Chemistry of Endohedral
Metallofullerenes .......................................... 261
Takahiro Tsuchiya, Takeshi Akasaka and Shigeru Nagase
10.1 Introduction .......................................... 261
10.2 Chemical Derivatization of Mono-Metallofullerenes ..... 262
10.2.1 Carbene Reaction ............................... 263
10.2.2 Nucleophilic Reaction .......................... 263
10.3 Chemical Derivatization of Di-Metallofullerenes ....... 265
10.3.1 Bis-silylation ................................. 266
10.3.2 Cycloaddition with Oxazolidinone ............... 267
10.3.3 Carbene Reaction ............................... 267
10.4 Chemical Derivatization of Trimetallic Nitride
Template Fullerene .................................... 269
10.5 Chemical Derivatization of Metallic Carbaide
Fullerene ............................................. 271
10.6 Missing Metallofullerene .............................. 271
10.7 Supramolecular Chemistry .............................. 274
10.7.1 Supramolecular System with Macrocycles ......... 274
10.7.2 Supramolecular System with Organic Donor ....... 276
10.8 Conclusion ............................................ 277
References ................................................. 278
11 Gadonanostructures as Magnetic Resonance Imaging Contrast
Agents ..................................................... 287
Jeyarama S. Ananta and Lon J. Wilson
11.1 Magnetic Resonance Imaging (MRI) and the Role of
Contrast Agents (CAs) ................................. 287
11.2 The Advantages of Gadonanostructures as MRI Contrast
Agent Synthons ........................................ 289
11.3 Gadofullerenes as MRI Contrast Agents ................. 290
11.4 Understanding the Relaxation Mechanism of
Gadofullerenes ........................................ 291
11.5 Gadonanotubes as MRI Contrast Agents .................. 294
Acknowledgement ....................................... 297
References ................................................. 297
12 Chemistry of Soluble Carbon Nanotubes: Fundamentals
and Applications ........................................... 301
Tsuyohiko Fujigaya and Naotoshi Nakashima
12.1 Introduction .......................................... 301
12.2 Characterizations of Dispersion States ................ 303
12.3 CNT Solubilization by Small Molecules ................. 303
12.3.1 Surfactants .................................... 303
12.3.2 Aromatic Compounds ............................. 305
12.4 Solubilization by Polymers ............................ 309
12.4.1 Vinyl Polymers ................................. 309
12.4.2 Conducting Polymers ............................ 313
12.4.3 Condensation Polymers .......................... 314
12.4.4 Block Copolymers ............................... 314
12.5 Nanotube/Polymer Hybrids and Composites ............... 315
12.5.1 DNA/Nanotube Hybrids ........................... 315
12.5.2 Curable Monomers and Nanoimprinting ............ 317
12.5.3 Nanotube/Polymer Gel-Near IR Responsive
Materials ...................................... 318
12.5.4 Conductive Nanotube Honeycomb Film ............. 320
12.6 Summary ............................................... 323
References ................................................. 323
13 Functionalization of Carbon Nanotubes for Nanoelectronic
and Photovoltaic Applications .............................. 333
Stephane Campidelli and Maurizio Prato
13.1 Introduction .......................................... 333
13.2 Functionalization of Carbon Nanotubes ................. 333
13.3 Properties and Applications ........................... 336
13.3.1 Electron Transfer Properties and Photovoltaic
Applications ................................... 336
13.3.2 Functionalized Carbon Nanotubes for
Electrical Measurements and Field Effect
Transistors .................................... 346
13.3.3 Biosensors ..................................... 351
13.4 Conclusion ............................................ 356
References ................................................. 356
14 Dispersion and Separation of Single-walled Carbon
Nanotubes .................................................. 365
Yutaka Maeda, Takeshi Akasaka, Jing Lu and Shigeru Nagase
14.1 Introduction .......................................... 365
14.2 Dispersion of SWNTs ................................... 366
14.2.1 Dispersion of SWNTs Using Amine ................ 366
14.2.2 Dispersion of SWNTs Using C60 Derivatives ...... 368
14.2.3 Dispersion of SWNTs in Organic Solvents ........ 371
14.3 Purification and Separation of SWNTs Using Amine ...... 373
14.3.1 Purification and Separation of SWNTs Prepared
by CVD Methods ................................. 373
14.3.2 Purification and Separation of Metallic SWNTs
Prepared by Arc-Discharged Method .............. 375
14.3.3 Preparation of SWNTs and Metallic SWNTs
Films .......................................... 377
14.4 Conclusion ............................................ 380
References ................................................. 380
15 Molecular Encapsulations into Interior Spaces of Carbon
Nanotubes and Nanohorns .................................... 385
T. Okazaki, S. Iijima and M. Yudasaka
15.1 Introduction .......................................... 385
15.2 SWCNT Nanopeapods ..................................... 386
15.2.1 Synthesis Methods .............................. 386
15.2.2 Electronic Structures of C60 Nanopeapods ....... 387
15.3 Material Incorporation and Release in/from SWNH ....... 394
15.3.1 Structure of SWNH and SWNHox ................... 394
15.3.2 Liquid Phase Incorporation at Room
Temperature .................................... 395
15.3.3 Adsorption Sites of SWNHox ..................... 397
15.3.4 Release of Materials from inside SWNHox ........ 398
15.3.5 Plug ........................................... 401
15.4 Summary ............................................... 401
References ................................................. 401
16 Carbon Nanotube for Imaging of Single Molecules in
Motion ..................................................... 405
Eiichi Nakamura
16.1 Introduction .......................................... 405
16.2 Electron Microscopic Observation of Small Molecules ... 406
16.3 ТЕМ Imaging of Alkyl Carborane Molecules .............. 407
16.4 Alkyl Chain Passing through a Hole .................... 408
16.5 3D Structural Information on Pyrene Amide Molecule .... 409
16.6 Complex Molecule 4 Fixed outside of Nanotube .......... 410
16.7 Conclusion ............................................ 411
Acknowledgements ........................................... 411
References ................................................. 412
17 Chemistry of Single-Nano Diamond Particles ................. 413
Eiji Ösawa
17.1 Introduction .......................................... 413
17.2 Geometrical Structure ................................. 417
17.3 Electronic Structure .................................. 419
17.4 Properties ............................................ 422
17.4.1 Tight Hydration ................................ 422
17.4.2 Gels ........................................... 424
17.4.3 Number Effect .................................. 425
17.5 Applications .......................................... 425
17.5.1 Lubrication Water .............................. 426
17.6 Recollection and Perspectives ......................... 428
Acknowledgements ........................................... 430
References ................................................. 430
18 Properties of Π-electrons in Graphene Nanoribbons
and Nanographenes .......................................... 433
De-en Jiang, Xingfa Gao, Shigeru Nagase and Zhongfang Chen
18.1 Introduction .......................................... 433
18.2 Edge Effects in Graphene Nanoribbons and
Nanographenes ......................................... 435
18.3 Electronic and Magnetic Properties of Graphene
Nanoribbons and Nanographenes ......................... 438
18.3.1 Graphene Nanoribbons ........................... 438
18.3.2 Nanographenes .................................. 444
18.4 Outlook ............................................... 456
Acknowledgement ............................................ 456
References ................................................. 456
19 Carbon Nano Onions ......................................... 463
Luis Echegoyen, Angy Ortiz, Manuel N. Chaur and Amit
J. Palkar
19.1 Introduction .......................................... 464
19.2 Physical Properties of Carbon Nano Onions Obtained
from Annealing ........................................ 465
19.2.1 Annealing Process ............................. 465
19.3 Raman Spectroscopy of Carbon Nano Onions Prepared
by Annealing Nanodiamonds ............................. 466
19.3.1 X-Ray Diffraction Studies ...................... 467
19.3.2 Electrical Resistivity Studies ................. 468
19.4 Electron Paramagnetic Resonance Spectroscopy .......... 469
19.5 Carbon Nano Onions Prepared from Arcing Graphite
Underwater ............................................ 470
19.5.1 Mechanism of Formation ......................... 471
19.5.2 Properties of Carbon Nano Onions Obtained
from Arc Discharge ............................. 471
19.6 Reactivity of Carbon Nano Onions (CNOs) ............... 473
19.6.1 1,3-Dipolar Cycloaddition Reaction ............. 473
19.6.2 Amidation Reactions ............................ 474
19.6.3 [2+1] Cycloaddition Reactions .................. 475
19.6.4 Free-Radical Addition Reactions ................ 476
19.7 Potential Applications of CNOs ........................ 478
Acknowledgements ........................................... 481
References ................................................. 481
Index ......................................................... 485
|