Preface ...................................................... xiii
1 Introduction ................................................. 1
1.1 Statistical models ...................................... 1
1.2 Bayesian statistical modeling ........................... 6
1.3 Book organization ....................................... 8
2 Introduction to Bayesian analysis ........................... 13
2.1 Probability and Bayes' theorem ......................... 13
2.2 Introduction to Bayesian analysis ...................... 15
2.3 Bayesian inference on statistical models ............... 17
2.4 Sampling density specification ......................... 19
2.4.1 Probability density specification ............... 19
2.4.2 Econometrics: Quantifying price elasticity of
demand .......................................... 20
2.4.3 Financial econometrics: Describing a stock
market behavior ................................. 21
2.4.4 Bioinformatics: Tumor classification with gene
expression data ................................. 22
2.4.5 Psychometrics: Factor analysis model ............ 23
2.4.6 Marketing: Survival analysis model for
quantifying customer lifetime value ............. 24
2.4.7 Medical science: Nonlinear logistic regression
models .......................................... 25
2.4.8 Under the limited computer resources ............ 26
2.5 Prior distribution ..................................... 26
2.5.1 Diffuse priors .................................. 26
2.5.2 The Jeffreys' prior ............................. 27
2.5.3 Conjugate priors ................................ 27
2.5.4 Informative priors .............................. 27
2.5.5 Other priors .................................... 28
2.6 Summarizing the posterior inference .................... 28
2.6.1 Point estimates ................................. 28
2.6.2 Interval estimates .............................. 29
2.6.3 Densities ....................................... 29
2.6.4 Predictive distributions ........................ 30
2.7 Bayesian inference on linear regression models ......... 30
2.8 Bayesian model selection problems ...................... 33
2.8.1 Example: Subset variable selection problem ...... 33
2.8.2 Example: Smoothing parameter selection
problem ......................................... 35
2.8.3 Summary ......................................... 37
3 Asymptotic approach for Bayesian inference .................. 43
3.1 Asymptotic properties of the posterior distribution .... 43
3.1.1 Consistency ..................................... 43
3.1.2 Asymptotic normality of the posterior mode ...... 44
3.1.3 Example: Asymptotic normality of the posterior
mode of logistic regression ..................... 45
3.2 Bayesian central limit theorem ......................... 46
3.2.1 Bayesian central limit theorem .................. 47
3.2.2 Example: Poisson distribution with conjugate
prior ........................................... 49
3.2.3 Example: Confidence intervals ................... 50
3.3 Laplace method ......................................... 51
3.3.1 Laplace method for integral ..................... 51
3.3.2 Posterior expectation of a function of
parameter ....................................... 53
3.3.3 Example: Bernoulli distribution with a uniform
prior ........................................... 55
3.3.4 Asymptotic approximation of the Bayesian
predictive distribution ......................... 57
3.3.5 Laplace method for approximating marginal
posterior distribution .......................... 58
4 Computational approach for Bayesian inference ............... 63
4.1 Monte Carlo integration ................................ 63
4.2 Markov chain Monte Carlo methods for Bayesian
inference ............................................. 64
4.2.1 Gibbs sampler ................................... 65
4.2.2 Metropolis-Hastings sampler ..................... 65
4.2.3 Convergence check ............................... 67
4.2.4 Example: Gibbs sampling for seemingly
unrelated regression model ...................... 68
4.2.5 Example: Gibbs sampling for auto-correlated
errors .......................................... 73
4.3 Data augmentation ...................................... 76
4.3.1 Probit model .................................... 76
4.3.2 Generating random samples from the truncated
normal density .................................. 78
4.3.3 Ordered probit model ............................ 79
4.4 Hierarchical modeling .................................. 81
4.4.1 Lasso ........................................... 81
4.4.2 Gibbs sampling for Bayesian Lasso ............... 82
4.5 MCMC studies for the Bayesian inference on various
types of models ........................................ 83
4.5.1 Volatility time series models ................... 83
4.5.2 Simultaneous equation model ..................... 84
4.5.3 Quantile regression ............................. 86
4.5.4 Graphical models ................................ 88
4.5.5 Multinomial probit models ....................... 88
4.5.6 Markov switching models ......................... 90
4.6 Noniterative computation methods for Bayesian
inference .............................................. 93
4.6.1 The direct Monte Carlo .......................... 93
4.6.2 Importance sampling ............................. 94
4.6.3 Rejection sampling .............................. 95
4.6.4 Weighted bootstrap .............................. 96
5 Bayesian approach for model selection ...................... 101
5.1 General framework ..................................... 101
5.2 Definition of the Bayes factor ........................ 103
5.2.1 Example: Hypothesis testing 1 .................. 104
5.2.2 Example: Hypothesis testing 2 .................. 105
5.2.3 Example: Poisson models with conjugate
priors ......................................... 106
5.3 Exact calculation of the marginal likelihood .......... 108
5.3.1 Example: Binomial model with conjugate prior ... 108
5.3.2 Example: Normal regression model with
conjugate prior and Zellner's g-prior .......... 109
5.3.3 Example: Multi-response normal regression
model .......................................... 1ll
5.4 Laplace's method and asymptotic approach for
computing the marginal likelihood ..................... 113
5.5 Definition of the Bayesian information criterion ...... 115
5.5.1 Example: Evaluation of the approximation
error .......................................... 116
5.5.2 Example: Link function selection for binomial
regression ..................................... 116
5.5.3 Example: Selecting the number of factors in
factor analysis model .......................... 118
5.5.4 Example: Survival analysis ..................... 121
5.5.5 Consistency of the Bayesian information
criteria ....................................... 124
5.6 Definition of the generalized Bayesian information
criterion ............................................. 125
5.6.1 Example: Nonlinear regression models using
basis expansion predictors ..................... 126
5.6.2 Example: Multinomial logistic model with
basis expansion predictors ..................... 132
5.7 Bayes factor with improper prior ...................... 141
5.7.1 Intrinsic Bayes factors ........................ 142
5.7.2 Partial Bayes factor and fractional Bayes
factor ......................................... 146
5.7.3 Posterior Bayes factors ........................ 147
5.7.4 Pseudo Bayes factors based on cross
validation ..................................... 148
5.7.4.1 Example: Bayesian linear regression
model with improper prior ............. 148
5.8 Expected predictive likelihood approach for Bayesian
model selection ....................................... 149
5.8.1 Predictive likelihood for model selection ...... 150
5.8.2 Example: Normal model with conjugate prior ..... 152
5.8.3 Example: Bayesian spatial modeling ............. 152
5.9 Other related topics .................................. 155
5.9.1 Bayes factors when model dimension grows ....... 155
5.9.2 Bayesian p-values .............................. 156
5.9.3 Bayesian sensitivity analysis .................. 157
5.9.3.1 Example: Sensitivity analysis of
Value at Risk ......................... 158
5.9.3.2 Example: Bayesian change point
analysis .............................. 160
6 Simulation approach for computing the marginal
likelihood ................................................. 169
6.1 Laplace-Metropolis approximation ...................... 169
6.2 Gelfand-Day's approximation and the harmonic mean
estimator ............................................. 172
6.2.1 Example: Bayesian analysis of the ordered
probit model ................................... 172
6.3 Chib's estimator from Gibb's sampling ................. 174
6.3.1 Example: Seemingly unrelated regression model
with informative prior ......................... 176
6.3.1.1 Calculation of the marginal
likelihood ............................ 177
6.4 Chib's estimator from MH sampling ..................... 179
6.5 Bridge sampling methods ............................... 181
6.6 The Savage-Dickey density ratio approach .............. 182
6.6.1 Example: Bayesian linear regression model ...... 182
6.7 Kernel density approach ............................... 185
6.7.1 Example: Bayesian analysis of the probit
model .......................................... 185
6.8 Direct computation of the posterior model
probabilities ......................................... 187
6.8.1 Reversible jump MCMC ........................... 187
6.8.2 Example: Reversible jump MCMC for seemingly
unrelated regression model with informative
prior .......................................... 188
6.8.3 Product space search and metropolized product
space search ................................... 190
6.8.4 Bayesian variable selection for large model
space .......................................... 192
7 Various Bayesian model selection criteria .................. 199
7.1 Bayesian predictive information criterion ............. 199
7.1.1 The posterior mean of the log-likelihood and
the expected log-likelihood .................... 199
7.1.2 Bias correction for the posterior mean of the
log-likelihood ................................. 201
7.1.3 Definition of the Bayesian predictive
information criterion .......................... 201
7.1.4 Example: Bayesian generalized state space
modeling ....................................... 204
7.2 Deviance information criterion ........................ 214
7.2.1 Example: Hierarchical Bayesian modeling for
logistic regression ............................ 215
7.3 A minimum posterior predictive loss approach .......... 216
7.4 Modified Bayesian information criterion ............... 218
7.4.1 Example: P-spline regression model with
Gaussian noise ................................. 220
7.4.2 Example: P-spline logistic regression .......... 221
7.5 Generalized information criterion ..................... 222
7.5.1 Example: Heterogeneous error model for the
analysis motorcycle impact data ................ 226
7.5.2 Example: Microarray data analysis .............. 227
8 Theoretical development and comparisons .................... 235
8.1 Derivation of Bayesian information criteria ........... 235
8.2 Derivation of generalized Bayesian information
criteria .............................................. 237
8.3 Derivation of Bayesian predictive information
criterion ............................................. 238
8.3.1 Derivation of BPIC ............................. 239
8.3.2 Further simplification of BPIC ................. 243
8.4 Derivation of generalized information criterion ....... 245
8.4.1 Information theoretic approach ................. 245
8.4.2 Derivation of GIC............................... 248
8.5 Comparison of various Bayesian model selection
criteria .............................................. 250
8.5.1 Utility function ............................... 250
8.5.2 Robustness to the improper prior ............... 252
8.5.3 Computational cost ............................. 252
8.5.4 Estimation methods ............................. 253
8.5.5 Misspecified models ............................ 253
8.5.6 Consistency .................................... 253
9 Bayesian model averaging ................................... 257
9.1 Definition of Bayesian model averaging ................ 257
9.2 Occam's window method ................................. 259
9.3 Bayesian model averaging for linear regression
models ................................................ 260
9.4 Other model averaging methods ......................... 261
9.4.1 Model averaging with AIC ....................... 262
9.4.2 Model averaging with predictive likelihood ..... 262
Bibliography .................................................. 265
Index ......................................................... 285
|