Ando T. Bayesian model selection and statistical modeling (Boca Raton; London, 2010). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаAndo T. Bayesian model selection and statistical modeling. - Boca Raton; London: CRC Press, 2010. - xiv, 286 p.: ill. - (Statistics: textbooks and monographs). - Bibliogr.: p.265-284. - Ind.: p.285-286. - ISBN 978-1-4398-3614-9
 

Место хранения: 013 | Институт математики СО РАН | Новосибирск | Библиотека

Оглавление / Contents
 
Preface ...................................................... xiii

1  Introduction ................................................. 1
   1.1  Statistical models ...................................... 1
   1.2  Bayesian statistical modeling ........................... 6
   1.3  Book organization ....................................... 8
2  Introduction to Bayesian analysis ........................... 13
   2.1  Probability and Bayes' theorem ......................... 13
   2.2  Introduction to Bayesian analysis ...................... 15
   2.3  Bayesian inference on statistical models ............... 17
   2.4  Sampling density specification ......................... 19
        2.4.1  Probability density specification ............... 19
        2.4.2  Econometrics: Quantifying price elasticity of
               demand .......................................... 20
        2.4.3  Financial econometrics: Describing a stock
               market behavior ................................. 21
        2.4.4  Bioinformatics: Tumor classification with gene
               expression data ................................. 22
        2.4.5  Psychometrics: Factor analysis model ............ 23
        2.4.6  Marketing: Survival analysis model for
               quantifying customer lifetime value ............. 24
        2.4.7  Medical science: Nonlinear logistic regression
               models .......................................... 25
        2.4.8  Under the limited computer resources ............ 26
   2.5  Prior distribution ..................................... 26
        2.5.1  Diffuse priors .................................. 26
        2.5.2  The Jeffreys' prior ............................. 27
        2.5.3  Conjugate priors ................................ 27
        2.5.4  Informative priors .............................. 27
        2.5.5  Other priors .................................... 28
   2.6  Summarizing the posterior inference .................... 28
        2.6.1  Point estimates ................................. 28
        2.6.2  Interval estimates .............................. 29
        2.6.3  Densities ....................................... 29
        2.6.4  Predictive distributions ........................ 30
   2.7  Bayesian inference on linear regression models ......... 30
   2.8  Bayesian model selection problems ...................... 33
        2.8.1  Example: Subset variable selection problem ...... 33
        2.8.2  Example: Smoothing parameter selection
               problem ......................................... 35
        2.8.3  Summary ......................................... 37
3  Asymptotic approach for Bayesian inference .................. 43
   3.1  Asymptotic properties of the posterior distribution .... 43
        3.1.1  Consistency ..................................... 43
        3.1.2  Asymptotic normality of the posterior mode ...... 44
        3.1.3  Example: Asymptotic normality of the posterior
               mode of logistic regression ..................... 45
   3.2  Bayesian central limit theorem ......................... 46
        3.2.1  Bayesian central limit theorem .................. 47
        3.2.2  Example: Poisson distribution with conjugate
               prior ........................................... 49
        3.2.3  Example: Confidence intervals ................... 50
   3.3  Laplace method ......................................... 51
        3.3.1  Laplace method for integral ..................... 51
        3.3.2  Posterior expectation of a function of
               parameter ....................................... 53
        3.3.3  Example: Bernoulli distribution with a uniform
               prior ........................................... 55
        3.3.4  Asymptotic approximation of the Bayesian
               predictive distribution ......................... 57
        3.3.5  Laplace method for approximating marginal
               posterior distribution .......................... 58
4  Computational approach for Bayesian inference ............... 63
   4.1  Monte Carlo integration ................................ 63
   4.2  Markov chain Monte Carlo methods for Bayesian
        inference  ............................................. 64
        4.2.1  Gibbs sampler ................................... 65
        4.2.2  Metropolis-Hastings sampler ..................... 65
        4.2.3  Convergence check ............................... 67
        4.2.4  Example: Gibbs sampling for seemingly
               unrelated regression model ...................... 68
        4.2.5  Example: Gibbs sampling for auto-correlated
               errors .......................................... 73
   4.3  Data augmentation ...................................... 76
        4.3.1  Probit model .................................... 76
        4.3.2  Generating random samples from the truncated
               normal density .................................. 78
        4.3.3  Ordered probit model ............................ 79
   4.4  Hierarchical modeling .................................. 81
        4.4.1  Lasso ........................................... 81
        4.4.2  Gibbs sampling for Bayesian Lasso ............... 82
   4.5  MCMC studies for the Bayesian inference on various
        types of models ........................................ 83
        4.5.1  Volatility time series models ................... 83
        4.5.2  Simultaneous equation model ..................... 84
        4.5.3  Quantile regression ............................. 86
        4.5.4  Graphical models ................................ 88
        4.5.5  Multinomial probit models ....................... 88
        4.5.6  Markov switching models ......................... 90
   4.6  Noniterative computation methods for Bayesian
        inference .............................................. 93
        4.6.1  The direct Monte Carlo .......................... 93
        4.6.2  Importance sampling ............................. 94
        4.6.3  Rejection sampling .............................. 95
        4.6.4  Weighted bootstrap .............................. 96
5  Bayesian approach for model selection ...................... 101
   5.1  General framework ..................................... 101
   5.2  Definition of the Bayes factor ........................ 103
        5.2.1  Example: Hypothesis testing 1 .................. 104
        5.2.2  Example: Hypothesis testing 2 .................. 105
        5.2.3  Example: Poisson models with conjugate
               priors ......................................... 106
   5.3  Exact calculation of the marginal likelihood .......... 108
        5.3.1  Example: Binomial model with conjugate prior ... 108
        5.3.2  Example: Normal regression model with
               conjugate prior and Zellner's g-prior .......... 109
        5.3.3  Example: Multi-response normal regression
               model .......................................... 1ll
   5.4  Laplace's method and asymptotic approach for
        computing the marginal likelihood ..................... 113
   5.5  Definition of the Bayesian information criterion ...... 115
        5.5.1  Example: Evaluation of the approximation
               error .......................................... 116
        5.5.2  Example: Link function selection for binomial
               regression ..................................... 116
        5.5.3  Example: Selecting the number of factors in
               factor analysis model .......................... 118
        5.5.4  Example: Survival analysis ..................... 121
        5.5.5  Consistency of the Bayesian information
               criteria ....................................... 124
   5.6  Definition of the generalized Bayesian information
        criterion ............................................. 125
        5.6.1  Example: Nonlinear regression models using
               basis expansion predictors ..................... 126
        5.6.2  Example: Multinomial logistic model with
               basis expansion predictors ..................... 132
   5.7  Bayes factor with improper prior ...................... 141
        5.7.1  Intrinsic Bayes factors ........................ 142
        5.7.2  Partial Bayes factor and fractional Bayes
               factor ......................................... 146
        5.7.3  Posterior Bayes factors ........................ 147
        5.7.4  Pseudo Bayes factors based on cross
               validation ..................................... 148
               5.7.4.1  Example: Bayesian linear regression
                        model with improper prior ............. 148
   5.8  Expected predictive likelihood approach for Bayesian
        model selection ....................................... 149
        5.8.1  Predictive likelihood for model selection ...... 150
        5.8.2  Example: Normal model with conjugate prior ..... 152
        5.8.3  Example: Bayesian spatial modeling ............. 152
   5.9  Other related topics .................................. 155
        5.9.1  Bayes factors when model dimension grows ....... 155
        5.9.2  Bayesian p-values .............................. 156
        5.9.3  Bayesian sensitivity analysis .................. 157
               5.9.3.1  Example: Sensitivity analysis of
                        Value at Risk ......................... 158
               5.9.3.2  Example: Bayesian change point
                        analysis .............................. 160
6  Simulation approach for computing the marginal
   likelihood ................................................. 169
   6.1  Laplace-Metropolis approximation ...................... 169
   6.2  Gelfand-Day's approximation and the harmonic mean
        estimator ............................................. 172
        6.2.1  Example: Bayesian analysis of the ordered
               probit model ................................... 172
   6.3  Chib's estimator from Gibb's sampling ................. 174
        6.3.1  Example: Seemingly unrelated regression model
               with informative prior ......................... 176
               6.3.1.1  Calculation of the marginal
                        likelihood ............................ 177
   6.4  Chib's estimator from MH sampling ..................... 179
   6.5  Bridge sampling methods ............................... 181
   6.6  The Savage-Dickey density ratio approach .............. 182
        6.6.1  Example: Bayesian linear regression model ...... 182
   6.7  Kernel density approach ............................... 185
        6.7.1  Example: Bayesian analysis of the probit
               model .......................................... 185
   6.8  Direct computation of the posterior model
        probabilities ......................................... 187
        6.8.1  Reversible jump MCMC ........................... 187
        6.8.2  Example: Reversible jump MCMC for seemingly
               unrelated regression model with informative
               prior .......................................... 188
        6.8.3  Product space search and metropolized product
               space search ................................... 190
        6.8.4  Bayesian variable selection for large model
               space .......................................... 192
7  Various Bayesian model selection criteria .................. 199
   7.1  Bayesian predictive information criterion ............. 199
        7.1.1  The posterior mean of the log-likelihood and
               the expected log-likelihood .................... 199
        7.1.2  Bias correction for the posterior mean of the
               log-likelihood ................................. 201
        7.1.3  Definition of the Bayesian predictive
               information criterion .......................... 201
        7.1.4  Example: Bayesian generalized state space
               modeling ....................................... 204
   7.2  Deviance information criterion ........................ 214
        7.2.1  Example: Hierarchical Bayesian modeling for
               logistic regression ............................ 215
   7.3  A minimum posterior predictive loss approach .......... 216
   7.4  Modified Bayesian information criterion ............... 218
        7.4.1  Example: P-spline regression model with
               Gaussian noise ................................. 220
        7.4.2  Example: P-spline logistic regression .......... 221
   7.5  Generalized information criterion ..................... 222
        7.5.1  Example: Heterogeneous error model for the
               analysis motorcycle impact data ................ 226
        7.5.2  Example: Microarray data analysis .............. 227
8  Theoretical development and comparisons .................... 235
   8.1  Derivation of Bayesian information criteria ........... 235
   8.2  Derivation of generalized Bayesian information
        criteria .............................................. 237
   8.3  Derivation of Bayesian predictive information
        criterion ............................................. 238
        8.3.1  Derivation of BPIC ............................. 239
        8.3.2  Further simplification of BPIC ................. 243
   8.4  Derivation of generalized information criterion ....... 245
        8.4.1  Information theoretic approach ................. 245
        8.4.2  Derivation of GIC............................... 248
   8.5  Comparison of various Bayesian model selection
        criteria .............................................. 250
        8.5.1  Utility function ............................... 250
        8.5.2  Robustness to the improper prior ............... 252
        8.5.3  Computational cost ............................. 252
        8.5.4  Estimation methods ............................. 253
        8.5.5  Misspecified models ............................ 253
        8.5.6  Consistency .................................... 253
9  Bayesian model averaging ................................... 257
   9.1  Definition of Bayesian model averaging ................ 257
   9.2  Occam's window method ................................. 259
   9.3  Bayesian model averaging for linear regression
        models ................................................ 260
   9.4  Other model averaging methods ......................... 261
        9.4.1  Model averaging with AIC ....................... 262
        9.4.2  Model averaging with predictive likelihood ..... 262

Bibliography .................................................. 265
Index ......................................................... 285


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:22:42 2019. Размер: 18,765 bytes.
Посещение N 1634 c 11.10.2011