On solar hydrogen & nanotechnology (Singapore, 2009). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаOn solar hydrogen & nanotechnology / ed. by L.Vayssieres. - Singapore: John Wiley & Sons (Asia) Pte Ltd, 2009. - xxi, 680 p., [16] p. of plates: ill. (some col.). - Incl. bibl. ref. - Ind.: p.665-680. - ISBN 978-0-47082-397-2
 

Оглавление / Contents
 
List of Contributors ......................................... xvii
Preface ....................................................... xix
Editor Biography ............................................ xxiii

PART ONE—FUNDAMENTALS, MODELING, AND EXPERIMENTAL 
INVESTIGATION OF PHOTOCATALYTIC REACTIONS FOR DIRECT SOLAR
HYDROGEN GENERATION

1  Solar Hydrogen Production by Photoelectrochemical
   Water Splitting: The Promise and Challenge ................... 3
   Eric L. Miller
   1.1  Introduction ............................................ 3
   1.2  Hydrogen or Hype? ....................................... 4
   1.3  Solar Pathways to Hydrogen .............................. 5
        1.3.1  The Solar Resource ............................... 5
        1.3.2  Converting Sunlight .............................. 6
        1.3.3  Solar-Thermal Conversion ......................... 7
        1.3.4  Solar-Potential Conversion ....................... 8
        1.3.5  Pathways to Hydrogen ............................. 9
   1.4  Photoelectrochemical Water-Splitting ................... 10
        1.4.1  Photoelectrochemistry ........................... 10
        1.4.2  PEC Water-Splitting Reactions ................... 10
        1.4.3  Solar-to-Hydrogen Conversion Efficiency ......... 13
        1.4.4  Fundamental Process Steps ....................... 14
   1.5  The Semiconductor/Electrolyte Interface ................ 14
        1.5.1  Rectifying Junctions ............................ 14
        1.5.2  A Solid-State Analogy: The np+ Junction ......... 15
        1.5.3  PEC Junction Formation .......................... 17
        1.5.4  Illuminated Characteristics ..................... 19
        1.5.5  Fundamental Process Steps ....................... 20
   1.6  Photoelectrode Implementations ......................... 23
        1.6.1  Single-Junction Performance Limits .............. 23
        1.6.2  Multijunction Performance Limits ................ 24
        1.6.3  A Shining Example ............................... 27
        1.7  The PEC Challenge ................................. 28
        1.7.1  What's Needed, Really? .......................... 28
        1.7.2  Tradeoffs and Compromises ....................... 29
        1.7.3  The Race with PV-Electrolysis ................... 29
   1.8  Facing the Challenge: Current PEC Materials Research ... 29
   Acknowledgments ............................................. 32
   References .................................................. 32
2  Modeling and Simulation of Photocatalytic Reactions at Ti02
   Surfaces .................................................... 37
   Hideyuki Kamisaka and Koichi Yamashita
   2.1  Importance of Theoretical Studies on TiO2 Systems ...... 37
   2.2  Doped TiO2 Systems: Carbon and Niobium Doping .......... 39
        2.2.1  First-Principle Calculations on TiO2 ............ 39
        2.2.2  C-Doped TiO2 .................................... 41
        2.2.3  Nb-Doped TiO2 ................................... 45
   2.3  Surface Hydroxyl Groups and the Photoinduced
        Hydrophilicity of TiO2 ................................. 51
        2.3.1  Speculated Active Species on TiO2 - Superoxide
               Anion (O2-) and the Hydroxyl Radical (OH) ...... 51
        2.3.2  Theoretical Calculations of TiO2 Surfaces and
               Adsorbents ...................................... 51
        2.3.3  Surface Hydroxyl Groups and Photoinduced
               Hydrophilic Conversion .......................... 53
   2.4  Dye-Sensitized Solar Cells ............................. 58
        2.4.1  Conventional Sensitizers: Ruthenium Compounds
               and Organic Dyes ................................ 58
        2.4.2  Multiexciton Generation in Quantum Dots:
               A Novel Sensitizer for a DSSC ................... 59
        2.4.3  Theoretical Estimation of the Decoherence Time
               between the Electronic States in PbSe QDs ....... 60
   2.5  Future Directions: Ab Initio Simulations and the
        Local Excited States on TiO2 ........................... 63
        2.5.1  Improvement of the DFT Functional ............... 64
        2.5.2  Molecular Mechanics and Ab Initio Molecular
               Dynamics ........................................ 65
        2.5.3  Description of Local Excited States ............. 66
        2.5.4  Nonadiabatic Behavior of a System and
               Interfacial Electron Transfer ................... 67
   Acknowledgments ............................................. 68
   References .................................................. 68
3  Photocatalytic Reactions on Model Single Crystal Ti02
   Surfaces .................................................... 77
   G.I.N. Waterhouse and H. Idriss
   3.1  TiO2 Single-Crystal Surfaces ........................... 78
   3.2  Photoreactions Over Semiconductor Surfaces ............. 80
   3.3  Ethanol Reactions Over TiO2 (l10) Surface .............. 81
   3.4  Photocatalysis and Structure Sensitivity ............... 83
   3.5  Hydrogen Production from Ethanol Over Au/TiO2
        Catalysts .............................................. 84
   3.6  Conclusions ............................................ 87
   References .................................................. 87
4  Fundamental Reactions on Rutile Ti02(110) Model
   Photocatalysts Studied by High-Resolution Scanning
   Tunneling Microscopy ........................................ 91
   Stefan Wendt, Ronnie T. Vang, and Flemming Besenbacher
   4.1  Introduction ........................................... 91
   4.2  Geometric Structure and Defects of the Rutile
        TiO2 (110) Surface ..................................... 93
   4.3  Reactions of Water with Oxygen Vacancies ............... 96
   4.4  Splitting of Paired H Adatoms and Other Reactions
        Observed on Partly Water Covered TiO2 ( 110) ........... 98
   4.5 O2Dissociation and the Role of Ti Interstitials ........ 101
   4.6  Intermediate Steps of the Reaction BetweenO2and
        H Adatoms and the Role of Coadsorbed Water ............ 106
   4.7  Bonding of Gold Nanoparticles on TiO2(l10) in
        Different Oxidation States ............................ 112
   4.8  Summary and Outlook ................................... 115
        References ............................................ 117

PART TWO—ELECTRONIC STRUCTURE, ENERGETICS, AND TRANSPORT
DYNAMICS OF PHOTOCATALYST NANOSTRUCTURES

5  Electronic Structure Study of Nanostructured Transition
   Metal Oxides Using Soft X-Ray Spectroscopy ................. 125
   Jinghua Guo, Per-Anders Glans, Yi-Sheng Liu, and Chinglin
   Chang
   5.1  Introduction .......................................... 125
   5.2  Soft X-Ray Spectroscopy ............................... 126
        5.2.1  Soft X-Ray Absorption and Emission
               Spectroscopy ................................... 126
        5.2.2  Resonantly Excited Soft X-Ray Emission
               Spectroscopy ................................... 127
   5.3  Experiment Set-Up ..................................... 127
        5.3.1  Beamline ....................................... 128
        5.3.2  Spectrometer and Endstation .................... 129
        5.3.3  Sample Arrangements ............................ 131
   5.4  Results and Discussion ................................ 132
        Acknowledgments ....................................... 139
        References ............................................ 139
6  X-ray and Electron Spectroscopy Studies of Oxide 
   Semiconductors for Photoelectrochemical Hydrogen 
   Production ................................................. 143
   Clemens Heske, Lothar Weinhardt, and Marcus Bär
   6.1  Introduction .......................................... 143
   6.2  Soft X-Ray and Electron Spectroscopies ................ 145
   6.3  Electronic Surface-Level Positions of WO3 Thin
        Films ................................................. 147
        6.3.1  Introduction ................................... 147
        6.3.2  Sample Handling and the Influence of X-Rays,
               UV-Light and Low-Energy Electrons on the
               Properties of the WO3 Surface .................. 147
        6.3.3  Surface Band Edge Positions in Vacuum -
               Determination with UPS/IPES .................... 149
        6.3.4  Estimated Surface Band-Edge Positions in
               Electrolyte .................................... 151
        6.3.5  Conclusions .................................... 153
   6.4  Soft X-Ray Spectroscopy of ZnO:Zn3N2 Thin Films ....... 154
        6.4.1  Introduction ................................... 154
        6.4.2  The О К XES Spectrum of ZnO:N Thin Films -
               Determination of the Valence Band Maximum ...... 154
        6.4.3  The Impact of Air Exposure on the Chemical
               Structure of ZnO:N Thin Films .................. 155
        6.4.4  Conclusions .................................... 157
   6.5  In Situ Soft X-Ray Spectroscopy: A Brief Outlook ...... 158
   6.6  Summary ............................................... 158
   Acknowledgments ............................................ 159
   References ................................................. 159
7  Applications of X-Ray Transient Absorption Spectroscopy
   in Photocatalysis for Hydrogen Generation .................. 163
   Lin X. Chen
   7.1  Introduction .......................................... 163
   7.2  X-Ray Transient Absorption Spectroscopy (XTA) ......... 165
   7.3  Tracking Electronic and Nuclear Configurations in
        Photoexcited Metalloporphyrins ........................ 171
   7.4  Tracking Metal-Center Oxidation States in the MLCT
        State of Metal Complexes .............................. 176
   7.5  Tracking Transient Metal Oxidation States During
        Hydrogen Generation ................................... 178
   7.6  Prospects and Challenges in Future Studies ............ 180
   Acknowledgments ............................................ 181
   References ................................................. 181
8  Fourier-Transform Infrared and Raman Spectroscopy of Pure
   and Doped Ti02 Photocatalysts .............................. 189
   Lars Österlund
   8.1  Introduction .......................................... 189
   8.2  Vibrational Spectroscopy on TiO2 Photocatalysts:
        Experimental Considerations ........................... 191
   8.3  Raman Spectroscopy of Pure and Doped TiO2
        Nanoparticles ......................................... 195
   8.4  Gas-Solid Photocatalytic Reactions Probed by FTIR
        Spectroscopy .......................................... 199
   8.5  Model Gas-Solid Reactions on Pure and Doped TiO2
        Nanoparticles Studied by FTIR Spectroscopy ............ 205
        8.5.1  Reactions with Formic Acid ..................... 205
        8.5.2  Reactions with Acetone ......................... 221
   8.6  Summary and Concluding Remarks ........................ 229
   Acknowledgments ............................................ 230
   References ................................................. 230
9  Interfacial Electron Transfer Reactions in CdS Quantum
   Dot Sensitized Ti02 Nanocrystalline Electrodes ............. 239
   Yasuhiro Tachibana
   9.1  Introduction .......................................... 239
   9.2  Nanomaterials ......................................... 240
        9.2.1  Semiconductor Quantum Dots ..................... 240
        9.2.2  Metal Oxide Nanocrystalline Semiconductor
               Films .......................................... 241
        9.2.3  QD Sensitized Metal Oxide Semiconductor
               Films .......................................... 242
   9.3  Transient Absorption Spectroscopy ..................... 245
        9.3.1  Principle ...................................... 245
        9.3.2  Calculation of Absorption Difference ........... 245
        9.3.3  System Arrangement ............................. 246
   9.4  Controlling Interfacial Electron Transfer Reactions
        by Nanomaterial Design ................................ 247
        9.4.1  QD/Metal-Oxide Interface ....................... 248
        9.4.2  QD/Electrolyte Interface ....................... 250
        9.4.3  Conducting Glass/Electrolyte Interface ......... 252
   9.5  Application of QD-Sensitized Metal-Oxide
        Semiconductors to Solar Hydrogen Production ........... 258
   9.6  Conclusion ............................................ 260
   Acknowledgments ............................................ 260
   References ................................................. 260

PART THREE—DEVELOPMENT OF ADVANCED NANOSTRUCTURES FOR
EFFICIENT SOLAR HYDROGEN PRODUCTION FROM CLASSICAL LARGE 
BANDGAP SEMICONDUCTORS

10 Ordered Titanium Dioxide Nanotubular Arrays as
   Photoanodes for Hydrogen Generation ........................ 267
   M. Misra and K.S. Raja
   10.1 Introduction  ......................................... 267
   10.2 Crystal Structure of TiO2 ............................. 268
        10.2.1 Electronic and Defect Structure of TiO2 ........ 269
        10.2.2 Preparation of TiO2 Nanotubes .................. 272
        10.2.3 Energetics of Photodecomposition of Water on
               TiO2 ........................................... 279
   References ................................................. 288
11 Electrodeposition of Nanostructured ZnO Films and Their
   Photoelectrochemical Properties ............................ 291
   Torsten Oekermann
   11.1 Introduction .......................................... 291
   11.2 Fundamentals of Electrochemical Deposition ............ 292
   11.3 Electrodeposition of Metal Oxides and Other
        Compounds ............................................. 294
   11.4 Electrodeposition of Zinc Oxide ....................... 295
        11.4.1 Electrodeposition of Pure ZnO .................. 295
        11.4.2 Electrodeposition of Doped ZnO ................. 297
        11.4.3 P-n-Junctions Based on Electrodeposited ZnO .... 298
   11.5 Electrodeposition of One- and Two-Dimensional ZnO
        Nanostructures ........................................ 298
        11.5.1 ZnO Nanorods ................................... 298
        11.5.2 ZnO Nanotubes .................................. 301
        11.5.3 Two-Dimensional ZnO Nanostructures ............. 302
   11.6 Use of Additives in ZnO Electrodeposition ............. 303
        11.6.1 Dye Molecules as Structure-Directing
               Additives ...................................... 303
        11.6.2 ZnO Electrodeposition with Surfactants ......... 307
        11.6.3 Other Additives ................................ 311
   11.7 Photoelectrochemical and Photovoltaic Properties ...... 312
        11.7.1 Dye-Sensitized Solar Cells (DSSCs) ............. 312
        11.7.2 Photoelectrochemical Investigation of the
               Electron Transport in Porous ZnO Films ......... 316
        11.7.3 Performance of Nanoporous Electrodeposited
               ZnO Films in DSSCs ............................. 320
        11.7.4 Use of ZnO Nanorods in Photovoltaics ........... 321
        11.8 Photocatalytic Properties ........................ 322
   11.9 Outlook ............................................... 323
   References ................................................. 323
12 Nanostructured Thin-Film W03 Photoanodes for Solar Water
   and Sea-Water Splitting .................................... 333
   Bruce D. Alexander and Jan Augustynski
   12.1 Historical Context .................................... 333
   12.2 Macrocrystalline WO3 Films ............................ 334
   12.3 Limitations of Macroscopic WO3 ........................ 336
   12.4 Nanostructured Films .................................. 336
   12.5 Tailoring WO3 Films Through a Modified Chimie Douce
        Synthetic Route ....................................... 339
   12.6 Surface Reactions at Nanocrystalline WO3 Electrodes ... 342
   12.7 Conclusions and Outlook ............................... 345
   References ................................................. 346
13 Nanostructured α-Fe203 in PEC Generation of Hydrogen ....... 349
   Vibha R. Satsangi, Sahab Dass, and Rohit Shrivastav
   13.1 Introduction .......................................... 349
   13.2 α-Fe2O3 ............................................... 350
        13.2.1 Structural and Electrical/Electronic
               Properties ..................................... 350
        13.2.2 α-Fe2O3 in PEC Splitting of Water .............. 351
   13.3 Nanostructured α-Fe2O3 Photoelectrodes ................ 352
        13.3.1 Preparation Techniques and
               Photoelectrochemical Response .................. 353
        13.3.2 Flatband Potential and Donor Density ........... 365
   13.4 Strategies to Enhance Photoresponse ................... 368
        13.4.1 Doping ......................................... 368
        13.4.2 Choice of Electrolytes ......................... 373
        13.4.3 Dye Sensitizers ................................ 374
        13.4.4 Porosity ....................................... 375
        13.4.5 Forward/Backward Illumination .................. 375
        13.4.6 Loading of Metal/Metal Oxide ................... 377
        13.4.7 Layered Structures ............................. 377
        13.4.8 Deposition of Zn Islands ....................... 380
        13.4.9 Swift Heavy Ion (SHI) Irradiation .............. 382
        13.4.10 p/n Assemblies ................................ 385
   13.5 Efficiency and Hydrogen Production .................... 386
   13.6 Concluding Remarks .................................... 388
   Acknowledgments ............................................ 393
   References ................................................. 393

PART FOUR—NEW DESIGN AND APPROACHES TO BANDGAP PROFILING AND
VISIBLE-LIGHT-ACTIVE NANOSTRUCTURES

14 Photoelectrocatalyst Discovery Using High-Throughput
   Methods and Combinatorial Chemistry ........................ 401
   Alan Kleiman-Shwarsctein, Peng Zhang, Yongsheng Нu, and
   Eric W. McFarland
   14.1 Introduction .......................................... 401
   14.2 The Use of High-Throughput and Combinatorial Methods
        for the Discovery and Optimization of
        Photoelectrocatalyst Material Systems ................. 402
        14.2.1 The Use of High-Throughput and Combinatorial
               Methods in Materials Science ................... 402
        14.2.2 HTE Applications to PEC Discovery .............. 405
        14.2.3 Absorbers ...................................... 408
        14.2.4 Bulk Carrier Transport ......................... 411
        14.2.5 Electrocatalysts ............................... 412
        14.2.6 Morphology and Material System ................. 412
        14.2.7 Library Format, Data Management and Analysis ... 414
   14.3 Practical Methods of High-Throughput Synthesis of
        Photoelectrocatalysts ................................. 415
        14.3.1 Vapor Deposition ............................... 416
        14.3.2 Liquid Phase Synthesis ......................... 417
        14.3.3 Electrochemical Synthesis ...................... 419
        14.3.4 Spray Pyrolysis ................................ 422
   14.4 Photocatalyst Screening and Characterization .......... 423
        14.4.1 High-Throughput Screening ...................... 424
        14.4.2 Secondary Screening and Quantitative
               Characterization ............................... 432
   14.5 Specific Examples of High-Throughput Methodology
        Applied to Photoelectrocatalysts ...................... 437
        14.5.1 Solar Absorbers ................................ 437
        14.5.2 Improving Charge-Transfer Efficiency ........... 443
        14.5.3 Improved PEC Electrocatalysts .................. 448
        14.5.4 Design and Assembly of a Complete
               Nanostructured Photocatalytic Unit ............. 451
   14.6 Summary and Outlook ................................... 453
   References ................................................. 454
15 Multidimensional Nanostructures for Solar Water 
   Splitting: Synthesis, Properties, and Applications ......... 459
   Abraham Wolcott and Jin Z. Zhang
   15.1 Motivation for Developing Metal-Oxide
        Nanostructures ........................................ 459
        15.1.1 Introduction ................................... 459
        15.1.2 PEC Water Splitting for Hydrogen Production .... 460
        15.1.3 Metal-Oxide PEC Cells .......................... 460
        15.1.4 Dye and QD Sensitization ....................... 462
        15.1.5 Deposition Techniques for Metal Oxides ......... 462
   15.2 Colloidal Methods for 0D Metal-Oxide Nanoparticle
        Synthesis ............................................. 463
        15.2.1 Colloidal Nanoparticles ........................ 463
        15.2.2 TiO2 Sol-Gel Synthesis ......................... 464
        15.2.3 TiO2 Hydrothermal Synthesis .................... 465
        15.2.4 TiO2 Solvothermal and Sonochemical Synthesis ... 466
        15.2.5 TiO2 Template-Driven Synthesis ................. 468
        15.2.6 Sol-Gel WO3 Colloidal Synthesis ................ 470
        15.2.7 WO3 Hydrothermal Synthesis ..................... 470
        15.2.8 WO3 Solvothermal and Sonochemical Synthesis .... 470
        15.2.9 WO3 Template Driven Synthesis .................. 471
        15.2.10 ZnO Sol-Gel Nanoparticle Synthesis ............ 473
        15.2.11 ZnO Hydrothermal Synthesis .................... 474
        15.2.12 ZnO Solvothermal and Sonochemical Synthesis ... 475
        15.2.13 ZnO Template-Driven Synthesis ................. 479
   15.3 ID Metal-Oxide Nanostructures ......................... 481
        15.3.1 Colloidal Synthesis and Fabrication ............ 481
        15.3.2 Synthesis and Fabrication of ID TiO2
               Nanostructures ................................. 481
        15.3.3 Colloidal Synthesis and Fabrication of ID WO3
               Nanostructures ................................. 486
        15.3.4 Colloidal Synthesis and Fabrication of ID ZnO
               Nanostructures ................................. 487
   15.4 2D Metal-Oxide Nanostructures ......................... 488
        15.4.1 Colloidal Synthesis of 2D TiO2
               Nanostructures ................................. 488
        15.4.2 Colloidal Synthesis of 2D WO3 Nanostructures ... 490
        15.4.3 Colloidal Synthesis of 2D ZnO Nanostructures ... 491
   15.5 Conclusion ............................................ 492
   Acknowledgments ............................................ 493
   References ................................................. 493
16 Nanoparticle-Assembled Catalysts for Photochemical
   Water Splitting ............................................ 507
   Frank E. Osterloh
   16.1 Introduction .......................................... 507
   16.2 Two-Component Catalysts ............................... 509
        16.2.1 Synthetic and Structural Aspects ............... 509
        16.2.2 Photocatalytic Hydrogen Evolution .............. 511
        16.2.3 Peroxide Formation ............................. 513
        16.2.4 Water Electrolysis ............................. 515
   16.3 CdSe Nanoribbons as a Quantum-Confined Water-
        Splitting Catalyst .................................... 516
   16.4 Conclusion and Outlook ................................ 518
   Acknowledgment ............................................. 519
   References ................................................. 519
17 Quantum-Confined Visible-Light-Active Metal-Oxide
   Nanostructures for Direct Solar-to-Hydrogen Generation ..... 523
   Lionel Vayssieres
   17.1 Introduction .......................................... 523
   17.2 Design of Advanced Semiconductor Nanostructures
        by Cost-Effective Technique ........................... 524
        17.2.1 Concepts and Experimental Set-Up of Aqueous
               Chemical Growth ................................ 524
        17.2.2 Achievements in Aqueous Design of Highly
               Oriented Metal-Oxide Arrays .................... 528
   17.3 Quantum Confinement Effects for Photovoltaics and
        Solar Hydrogen Generation ............................. 529
        17.3.1 Multiple Exciton Generation .................... 530
        17.3.2 Quantum-Well Structures ........................ 531
        17.3.3 Intermediate Band Materials .................... 531
   17.4 Novel Cost-Effective Visible-Light-Active (Hetero)
        Nanostructures for Solar Hydrogen Generation .......... 533
        17.4.1 Iron-Oxide Quantum-Rod Arrays .................. 533
        17.4.2 Doped Iron-Oxide Quantum-Rod Arrays ............ 541
        17.4.3 Quantum-Dot-Quantum-Rod Iron-Oxide
               Heteronanostructure Arrays  .................... 545
        17.4.4 Iron Oxide Oriented Porous Nanostructures ...... 546
   17.5 Conclusion and Perspectives ........................... 548
   References ................................................. 548
18 Effects of Metal-Ion Doping, Removal and Exchange on 
   Photocatalytic Activity of Metal Oxides and Nitrides for
   Overall Water Splitting .................................... 559
   Yasunobu Inoue
   18.1 Introduction .......................................... 559
   18.2 Experimental Procedures ............................... 561
   18.3 Effects of Metal Ion Doping ........................... 561
        18.3.1 Sr2+ Ion-Doped CeO2 ............................. 561
        18.3.2 Metal-Ion Doped GaN ............................ 564
   18.4 Effects of Metal-Ion Removal .......................... 569
   18.5 Effects of Metal-Ion Exchange on Photocatalysis ....... 573
        18.5.1 Yxn2-xO3 ........................................ 573
        18.5.2 Scxln2-x03 ...................................... 580
        18.5.3 YxIn2-xGe2O7 .................................... 582
   18.6 Effects of Zn Addition to Indate and Stannate ......... 583
        18.6.1 Li1.6Zn1.6Sn2.8O8 ................................ 584
        18.6.2 Ba3Zn5In2O11 .................................... 584
   18.7 Conclusions ........................................... 585
   Acknowledgments ............................................ 586
   References ................................................. 586
19 Supramolecular Complexes as Photoinitiated Electron 
   Collectors: Applications in Solar Hydrogen Production ...... 589
   Shamindri M. Arachchige and Karen J. Brewer
   19.1 Introduction .......................................... 589
        19.1.1 Solar Water Splitting .......................... 589
        19.1.2 Supramolecular Complexes and Photochemical
               Molecular Devices .............................. 590
        19.1.3 Polyazine Light Absorbers ...................... 591
        19.1.4 Polyazine Bridging Ligands to Construct
               Photochemical Molecular Devices ................ 594
        19.1.5 Multi-Component System for Visible Light
               Reduction of Water ............................. 595
        19.1.6 Photoinitiated Charge Separation ............... 596
   19.2 Supramolecular Complexes for Photoinitiated Electron
        Collection ............................................ 598
        19.2.1 Photoinitiated Electron Collection on
               a Bridging Ligand .............................. 598
        19.2.2 Ruthenium Polyazine Light Absorbers Coupled
               Through an Aromatic Bridging Ligand ............ 600
        19.2.3 Photoinitiated Electron Collection on
               a Platinum Metal ............................... 602
        19.2.4 Two-Electron Mixed-Valence Complexes for
               Multielectron Photochemistry ................... 604
        19.2.5 Rhodium-Centered Electron Collectors ........... 605
        19.2.6 Mixed-Metal Systems for Solar Hydrogen
               Production ..................................... 613
   19.3 Conclusions ........................................... 614
   List of Abbreviations ...................................... 616
   Acknowledgments ............................................ 616
   References ................................................. 617

PART FIVE—NEW DEVICES FOR SOLAR THERMAL HYDROGEN GENERATION

20 Novel Monolithic Reactors for Solar Thermochemical Water
   Splitting .................................................. 623
   Athanasios G. Konstandopoulos and Souzana Lorentzou
   20.1 Introduction .......................................... 623
        20.1.1 Energy Production and Nanotechnology ........... 623
        20.1.2 Application of Solar Technologies .............. 624
   20.2 Solar Hydrogen Production ............................. 624
        20.2.1 Solar Hydrogen Production: Thermochemical
               Processes ...................................... 625
        20.2.2 Solar Chemical Reactors ........................ 626
   20.3 HYDROSOL Reactor ...................................... 627
        20.3.1 The Idea ....................................... 627
        20.3.2 Redox Materials ................................ 627
        20.3.3 Water Splitting: Laboratory Tests .............. 629
        20.3.4 HYDROSOL Reactors .............................. 630
        20.3.5 Solar Testing .................................. 631
        20.3.6 Simulation ..................................... 633
        20.3.7 Future Developments ............................ 636
   20.4 HYDROSOL Process ...................................... 636
   20.5 Conclusions ........................................... 637
   Acknowledgments ............................................ 638
   References ................................................. 638

21 Solar Thermal and Efficient Solar Thermal/Electrochemical
   Photo Hydrogen Generation .................................. 641
   Stuart Licht
   21.1 Comparison of Solar Hydrogen Processes ................ 641
   21.2 STEP (Solar Thermal Electrochemical Photo)
        Generation of H2 ...................................... 646
   21.3 STEP Theory ........................................... 648
   21.4 STEP Experiment: Efficient Solar Water Splitting ...... 653
   21.5 NonHybrid Solar Thermal Processes ..................... 657
        21.5.1 Direct Solar Thermal Hydrogen Generation ....... 657
        21.5.2 Indirect (Multistep) Solar Thermal H2
               Generation ..................................... 659
   21.6 Conclusions ........................................... 660
   References ................................................. 661

Index ......................................................... 665

Index ......................................................... 665


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:22:40 2019. Размер: 36,628 bytes.
Посещение N 1869 c 04.10.2011