Preface ...................................................... xiii
Chapter 1 Energy Storage: Applications to the Electricity
Vector ............................................... 1
Yves BRUNET
1.1 Energy density ............................................. 1
1.2 Storage problem ............................................ 4
1.2.1 Electrical networks ................................. 4
1.2.2 Electric energy in France: forecast and
consumption curves .................................. 6
1.2.3 Relevant limits of storage using the differential
off-peak hours/peak hours .......................... 11
1.3 Types of storage .......................................... 14
1.3.1 Gravity storage .................................... 17
1.3.2 Inertial storage ................................... 18
1.3.3 Compressed air energy storage (CAES) ............... 19
1.3.4 Electrochemical storage: batteries ................. 23
1.3.5 Storage in the electromagnetic field ............... 39
1.3.6 Heat ............................................... 43
1.3.7 Small-scale storage ................................ 45
1.4 Bibliography .............................................. 48
Chapter 2. Nuclear Fission, Today and Tomorrow: from
"Renaissance" to Technological Breakthroughs ........ 51
Georges VAN GOETHEM
2.1 Introduction: all energy options kept open in 2006
Green Book ................................................ 52
2.2 Nuclear energy: 50 years of industrial experience ......... 54
2.2.1. Four generations of fission reactors:
a continuous technological evolution ............... 54
2.2.2. Other applications of nuclear energy: space
exploration and fusion (International
Thermonuclear Experimental Reactor (ITER)) ......... 58
2.3 Main actors: common needs, international vision and
strategic instruments ..................................... 61
2.4 On the eve of a technological breakthrough: six
challenges for research and development ................... 64
2.5 Generation II: supply security and environmental
protection ................................................ 69
2.5.1. Challenges facing the current nuclear reactors ..... 69
2.6 Generation III: continuous improvements in safety and
competitiveness ........................................... 71
2.6.1 Challenges for the next generation of nuclear
reactors (current renaissance) ..................... 71
2.6.2 Selection of 12 Generation Ill-type reactors ....... 74
2.7 Generation IV (2030 forecast): technological
breakthroughs in competitiveness and sustainability ....... 76
2.7.1 International collaboration (GIF with US-DOE,
INPRO with IAEA, Euratom in the EU) ................ 76
2.7.2 GIF criteria: sustainability, economy, safety,
reliability and proliferation resistance ........... 78
2.7.3 Co-generation (electricity-heat) and integral
recycling (sustainable development) ................ 80
2.7.4 Choice of six Generation IV-type nuclear systems
and Euratom research ............................... 86
2.7.5 List of Generation IV-related Euratom R&D
projects ........................................... 92
2.8 Education and training: main objectives (modules, mutual
recognition, and mobility) ................................ 94
2.9 Conclusion: nuclear energy - a part of the solution
in a sustainable energy mix .......................... 95
2.10 Bibliography .............................................. 97
2.11 List of acronyms .......................................... 98
Chapter 3. Co-generation ...................................... 101
William D'HAESELEER and Patrick LUICKX
3.1 Co-generation ............................................ 101
3.1.1 Co-generation principle: heat, force, and Carnot
efficiency ........................................ 101
3.1.2 The quality of energy and the concept of exergy ... 104
3.1.3 Co-generation, an intelligent way to generate
heat .............................................. 104
3.2 Overview of existing technologies ........................ 106
3.2.1 Currently used technologies ....................... 106
3.2.2 Prospective technologies .......................... 110
3.3 Co-generation installation dimensioning .................. 112
3.4 Assessment of the energy advantage of co-generation ...... 115
3.4.1 Fuel use rate ..................................... 115
3.4.2 Exergetic efficiency of a co-generation
installation ...................................... 118
3.4.3 Energy saving in co-generation compared to
separated generation .............................. 119
3.4.4 The energy equivalence and the influence of
a central park .................................... 122
3.5 Energy advantage allocation .............................. 124
3.5.1 Electricity advantage allocation, effective
electric efficiency ............................... 125
3.5.2 Heat advantage allocation, thermal effective
efficiency ........................................ 126
3.5.3 Suitable allocation of the energy advantage,
proper efficiency ................................. 127
3.6 The electrical aspects of co-generation installations .... 128
3.7 Cooling by absorption and tri-generation ................. 132
3.8 Estimation of the potential of co-generation ............. 133
3.8.1 Potential of co-generation energy ................. 133
3.8.2 Economic potential of the co-generation market .... 135
3.8.3 Co-generation installations already in
existence ......................................... 135
3.9 Influence of co-generation on the environment ............. 135
3.10 Conclusions and perspectives ............................. 136
3.11 Bibliography ............................................. 137
Chapter 4 Hydrogen: An Energy Vector ......................... 139
Thierry ALLEAU
4.1 Context .................................................. 139
4.1.1 Geopolitics and the energy situation .............. 139
4.1.2 The environmental situation ....................... 140
4.2 Hydrogen: an energy vector for the future? ............... 141
4.2.1 Today's uses ...................................... 142
4.2.2 Tomorrow's uses ................................... 143
4.3 How do we produce hydrogen? .............................. 143
4.3.1 Hydrogen production from fossil fuels ............. 144
4.3.2 Producing hydrogen from water ..................... 148
4.4 Hydrogen transportation .................................. 151
4.4.1 Transportation in liquid form ..................... 152
4.4.2 Transportation in gas form ........................ 152
4.5 Distribution ............................................. 153
4.5.1 Distribution of liquid hydrogen ................... 153
4.5.2 Distribution of hydrogen .......................... 154
4.6 Hydrogen storage ......................................... 155
4.6.1 Large fixed tanks ................................. 156
4.6.2 Small fixed tanks ................................. 156
4.7 Applications of hydrogen as energy vector ................ 160
4.7.1 Mobile ............................................ 160
4.7.2 Transportation modes and means .................... 162
4.7.3 Stationary applications ........................... 165
4.8 Risks, standards, regulations and acceptability .......... 166
4.8.1 Flammability and explosiveness .................... 166
4.8.2 Standardization ................................... 167
4.8.3 Regulation ........................................ 168
4.8.4 Hydrogen acceptability ............................ 168
4.9 A hydrogen economy ....................................... 169
4.9.1. The cost of hydrogen .............................. 171
4.10 The hydrogen players ..................................... 172
4.10.1 The public players ................................ 172
4.10.2 The main players in the research field ............ 173
4.10.3 The industrial actors ............................. 174
4.10.4 Participators in communication: associations,
periodicals, books, conferences, exhibitions ...... 174
4.11 Conclusions and perspectives ............................. 175
4.12 Bibliography ............................................. 176
Chapter 5 Fuel Cells ......................................... 179
Pierre BAURENS, Pierre SERRE-COMBE, Jean-Philipe
POIROT-CROUVEZIER
5.1 Introduction ............................................. 179
5.2 Operation principles in different cell types ............. 180
5.2.1 Definitions ....................................... 180
5.2.2 General principle of function: bases of
electrochemistry and of the elementary
electrochemical reactor ........................... 181
5.2.3 Elements of a fuel cell ........................... 191
5.2.4 Main cell types ................................... 199
5.3 The system aspect ........................................ 218
5.3.1 Functional analysis of a fuel cell system ......... 219
5.3.2 The major components of the generator ............. 220
5.3.3 The key points of a system operation .............. 227
5.3.4 Present performance levels of PEMFC systems ....... 233
5.4 Energy conversion efficiency ............................. 234
5.4.1 Energy efficiency equation ........................ 235
5.4.2 Some efficiency values ............................ 237
5.5 Main applications ........................................ 240
5.5.1 History ........................................... 240
5.5.2 Special applications .............................. 243
5.5.3 Military applications ............................. 243
5.5.4 Space applications ................................ 245
5.5.5 Special engines ................................... 247
5.5.6 Stationary applications ........................... 249
5.5.7 Transport applications ............................ 252
5.5.8 Nomad applications ................................ 256
5.5.9 The brakes and motors of fuel cell development .... 258
5.6 Bibliography ............................................. 260
Chapter 6. Toward Energy Positive Buildings ................... 263
Daniel QUENARD
6.1 Introduction ............................................. 263
6.2 Energy and buildings: some key figures in Europe ......... 264
6.2.1 Energy consumption per building type in France .... 265
6.2.2 Energy consumption per type of user in the
residential sector ................................ 267
6.2.3 Energy consumption in the tertiary sector ......... 268
6.2.4 Energy consumption per type of user in the
tertiary area ..................................... 269
6.3 How to move from buildings "addicted to fossil energy"
toward "low energy buildings" (LEB) and, further,
toward buildings as power plants (BaPP) .................. 270
6.3.1 The approach: from thermal regulation toward
energy labeling ................................... 273
6.3.2 Possible actions to reduce consumption ............ 276
6.4 The Minergie trademark ................................... 300
6.4.1. Examples of solution for a Minergie house ......... 302
6.5 The PassivHaus label (passive house) ..................... 306
6.6 The zero-energy houses: zero-energy house - zero-energy
home (ZEH) - zero-energy buildings (ZEB) ................. 313
6.7 The energy-positive house ........................... 319
6.8 Comparison of the three types of houses: Minergie,
PassivHaus and ZEH .................................. 320
6.9 Beyond the positive-energy building ................. 326
6.10 Bibliography ........................................ 329
Chapter 7. Light Sources and Lighting: from Technology
to Energy Savings .................................. 333
Georges ZISSIS
7.1 Lighting in the past and today ........................... 333
7.1.1 Present-day lamp families ......................... 336
7.1.2 The economic, environmental and energy impact of
lamps ............................................. 337
7.2 Light sources and energy conversion ...................... 340
7.2.1 The thermodynamic limit of white light
generation ........................................ 342
7.2.2 Lamp technology and associated challenges ......... 346
7.3 Energy savings in the lighting field: some typical case
studies .................................................. 365
7.3.1 Residential lighting .............................. 365
7.3.2 Urban lighting .................................... 368
7.4 What is the future for light sources? .................... 371
7.5 Bibliography ............................................. 373
Chapter 8. Distributed Generation: Impact and Solutions ....... 375
Raphaёl CAIRE and Bertrand RAISON
8.1 Introduction: a threat or an opportunity? ................ 375
8.2 Deregulation ............................................. 376
8.3 New generation equipment ................................. 377
8.3.1 Introduction to new generation equipment .......... 377
8.3.2 Small hydraulics .................................. 379
8.3.3 Wind generators ................................... 380
8.3.4 Photovoltaic modules .............................. 383
8.3.5 Gas turbines ...................................... 384
8.3.6 Combustion engines ................................ 386
8.3.7 Stirling engines .................................. 387
8.3.8 Fuel cells ........................................ 388
8.4 Impact of distributed generation on electric networks .... 391
8.4.1 Distribution networks ............................. 391
8.4.2 Impact of distributed generation on the electric
variables ......................................... 393
8.5 Solution elements ........................................ 396
8.5.1 Distributed suppliers coordination: the virtual
plant ............................................. 396
8.5.2 Active control of the distribution networks ....... 399
8.6 Conclusion: a challenge and a development opportunity
for the electricity sector ............................... 400
8.7 Bibliography ............................................. 401
Chapter 9. Control of the Energy Demand: Network Load
Shedding ........................................... 405
Guillaume VERNEAU
9.1 Nomenclature ............................................. 405
9.2 Introduction ............................................. 406
9.3 Stakes of the load control ............................... 407
9.3.1 System aspect ..................................... 407
9.3.2 Energy market aspects, Demand-Side Bidding and
Demand-Side Management programs ................... 410
9.3.3 Implication of the customer as a market and
system actor ...................................... 411
9.4 Choice of loads to control ............................... 412
9.4.1 Load classification according to their
controllability ................................... 413
9.4.2 Area classification ............................... 414
9.4.3 Most promising loads .............................. 419
9.5 Needs in communications, measurements and monitoring to
control the loads ........................................ 419
9.5.1 Introduction ...................................... 419
9.5.2 Various measurement requirements .................. 420
9.5.3 Required conditions for data measurement and
communication ..................................... 421
9.5.4 Choice between common or separated measurement
system ............................................ 423
9.5.5 Control needs ..................................... 426
9.5.6 Conclusion ........................................ 427
9.6 Model and algorithm needs for load control ............... 428
9.8 Bibliography ........................................ 439
List of authors ............................................... 442
Index ......................................................... 445
|