Preface ...................................................... XVII
About the Editor .............................................. XIX
List of Contributors ........................................ XXIII
List of Abbreviations ....................................... XXVII
List of Symbols ............................................ XXXIII
1 HCCI Combustion Chemistry, Reduced Kinetic Mechanisms
and Controlling Strategies ................................... 1
Hatim Machrafi
1.1 Introduction ............................................ 1
1.1.1 Present Situation ................................ 1
1.1.2 HCCI Engines, A New Alternative .................. 1
1.2 HCCI Combustion ......................................... 2
1.2.1 Definition ....................................... 2
1.2.2 Problem of Implementing the HCCI Method .......... 4
1.3 Chemical Kinetics in HCCI Combustion .................... 5
1.3.1 Chemical Combustion Mechanism of Iso-Octane ...... 6
1.3.1.1 Low-Temperature Interval ................ 6
1.3.1.2 Intermediate-Temperature Interval ....... 7
1.3.1.3 High-Temperature Interval ............... 8
1.3.2 Chemical Combustion Mechanism of Iso-octane ...... 9
1.3.3 Chemical Combustion Mechanism of Toluene ........ 10
1.3.3.1 Initiation Reactions ................... 10
1.3.3.2 Benzene Sub-Mechanism .................. 12
1.3.4 Resume of the Auto-Ignition Process ............. 13
1.4 Kinetic Mechanisms for the Study of HCCI Combustion .... 14
1.4.1 General Discussion about the Cool Flame
Phenomenon ...................................... 14
1.4.2 Reduced Kinetic Mechanisms ...................... 14
1.4.3 Experimental Validation of a Reduced Kinetic
Mechanism ....................................... 17
1.5 Controlling Strategies ................................. 19
1.5.1 Control Methods ................................. 19
1.5.2 Kinetic Mechanisms to Control the Auto-
Ignition ........................................ 20
1.6 Existing Applications of the HCCI Engine and its
Future ................................................. 27
1.7 Conclusions ............................................ 27
References .................................................. 28
2 Simulation of Low Temperature Combustion in Engines ......... 35
Song-Charng Kong
2.1 Introduction ........................................... 35
2.2 Numerical Models ....................................... 37
2.3 HCCI Combustion ........................................ 38
2.4 PCCI Combustion ........................................ 41
2.4.1 Low-Pressure Injection .......................... 41
2.4.2 High-Pressure Injection ......................... 47
2.5 Summary ................................................ 50
References .................................................. 50
3 Corona, Spark, and Electrothermal-Chemical Plasma
Ignition Systems ............................................ 53
Malay K. Das and Stefan T. Thynell
3.1 Introduction ........................................... 53
3.2 Plasma Fundamentals and Classifications ................ 54
3.3 Corona and Spark Discharge ............................. 55
3.4 Corona and Spark Ignition .............................. 56
3.5 Electrothermal-Chemical Ignition ....................... 59
3.6 Applications in Industry ............................... 65
3.7 Outlook ................................................ 66
3.8 Summary ................................................ 66
References .................................................. 67
4 Plasma-Assisted Ignition and Combustion ..................... 71
Svetlana M. Starikovskaia and Andrey Yu. Starikovskii
4.1 Introduction 71
4.2 General Principles ..................................... 72
4.2.1 Combustion Initiation and Plasma:
Fundamentals .................................... 72
4.2.2 Plasma Used for Combustion Initiation ........... 73
4.3 Experimental Evidences and Analysis of Mechanism ....... 76
4.3.1 Ignition by Plasma under Conditions of
Supersonic Flows ................................ 76
4.3.2 Discharges in Low Speed Gas Flows: Sustaining
Combustion ...................................... 80
4.3.3 Discharge behind the Reflected Shock Wave:
Decrease of Ignition Delay Time ................. 81
4.3.4 Kinetic Analysis: Available Experiments and
Numerical Modeling .............................. 82
4.4 Outlook ................................................ 85
4.5 Summary ................................................ 87
References .................................................. 87
5 Laser Ignition .............................................. 95
Tran X. Phuoc
5.1 Introduction ........................................... 95
5.2 Laser Ignition Energy .................................. 97
5.3 Breakdown Threshold Laser Energy ...................... 100
5.3.1 Multiphoton Ionization ......................... 101
5.3.2 Cascade Breakdown Ionization ................... 102
5.4 Spark Evolution ....................................... 106
5.5 Ignition Mechanism .................................... 111
5.5.1 Homogeneous Hot-Gas Model ...................... 112
5.5.2 Blast Wave Ignition Model ...................... 113
5.5.3 A Hot Gas Model ................................ 114
5.6 Potential Applications and Research Needs ............. 116
5.6.1 Laser-Induced Gas Breakdown and Evolution in
High-Speed and Highly Turbulent Streams ........ 117
5.6.2 Laser Ignition for Stabilization of Ultra-
Lean and High Speed Combustion Applications .... 118
5.6.3 Laser Ignition under Engine and/or Engine-
Like Conditions ................................ 118
5.6.4 Development of a Diode-Pumped Solid State
Laser for Laser Ignition Applications .......... 120
5.7 Conclusions ........................................... 121
References ................................................. 122
6 Combustion Enhancement and Stabilization: Principles of
Plasma Assistance and Diagnostics Tools .................... 125
Axel Vincent-Randonnier
6.1 Introduction .......................................... 125
6.2 Diagnostics Applied to Plasma-Assisted Combustion ..... 126
6.2.1 Imaging ........................................ 126
6.2.2 Schlieren Flow Visualization ................... 128
6.2.3 Interferometry ................................. 129
6.2.4 Spectroscopy ................................... 131
6.2.5 Laser-Induced Fluorescence ..................... 132
6.2.6 Coherent anti-Stokes Raman Scattering
Thermometry .................................... 136
6.2.7 Thomson Scattering ............................. 137
6.2.8 Gas Chromatography ............................. 138
6.3 Effect of the Plasma Assistance on Combustion ......... 139
6.3.1 General Considerations ......................... 139
6.3.2 Experiments and Interpretations ................ 142
6.3.2.1 Plasma Assistance Applied to Non-
Premixed or Partially Premixed
Combustion ............................ 142
6.3.2.2 Plasma Assistance Applied to
Premixed Combustion ................... 147
6.3.2.3 Plasma Assistance Applied to
Supersonic Combustion ................. 150
6.3.3 Numerical Simulation ........................... 151
6.4 Outlook ............................................... 154
6.5 Summary ............................................... 155
References ................................................. 156
7 Staged Combustion and Exhaust Gas Recirculation
in Fluidized Beds .......................................... 161
Markus Bolhar-Nordenkampf
7.1 Introduction .......................................... 161
7.2 General Aspects of Combustion ......................... 162
7.2.1 Excess Air ..................................... 162
7.2.2 Formation of Nitrogen Oxides ................... 162
7.3 Staged Combustion and Flue-Gas Recirculation in Gas-
and Oil-Fired Applications ............................ 163
7.3.1 Low Excess Air ................................. 163
7.3.2 Staged Combustion .............................. 164
7.3.3 Flue-Gas Recirculation ......................... 165
7.3.4 Reburning ...................................... 167
7.4 Stage Combustion in Modern Grate-Fired Applications ... 168
7.4.1 Advanced Secondary Air Supply .................. 169
7.5 Stage Combustion and Flue-Gas Recirculation in
Modern Bubbling Fluidized-Bed Boiler Applications ..... 171
7.5.1 Staged Combustion .............................. 171
7.5.2 Bed Fluidization ............................... 174
7.5.3 Bed Temperature ................................ 174
7.6 Outlook ............................................... 176
1.1 Summary ............................................... 177
References ................................................. 178
8 Hetero-/Homogeneous Combustion ............................. 181
John Mantzaras
8.1 Introduction .......................................... 181
8.2 Fundamentals of Catalytic Combustion .................. 183
8.2.1 Reactor Thermal Management ..................... 185
8.3 Hetero-/Homogeneous Combustion in Power Generation .... 188
8.4 Hetero-/Homogeneous Kinetics .......................... 190
8.4.1 Fuel-Lean Methane Combustion on Platinum ....... 192
8.4.1.1 Catalytic Kinetics .................... 192
8.4.1.2 Gas-Phase Kinetics .................... 193
8.4.1.3 Hetero-/Homogeneous Chemistry
Coupling .............................. 195
8.4.2 Fuel-Lean Hydrogen Combustion on Platinum ...... 196
8.4.3 Fuel-Rich Methane Combustion on Rhodium ........ 197
8.5 Application to Practical Systems ...................... 198
8.6 Turbulent Hetero-/Homogeneous Combustion .............. 201
8.7 Conclusions ........................................... 202
References ................................................. 203
9 Fluidized Bed Combustion of Natural Gas and other
Hydrocarbons ............................................... 209
Jean-Philippe Laviolette, Rahmat Sotudeh-Gharebagh,
Rachid Mabrouk, Gregory S. Patience, and Jamal Chaouki
9.1 Introduction .......................................... 209
9.1.1 Heterogeneous and Homogeneous Kinetics ......... 210
9.1.2 Mixing in Gas/Solid Fluidized Beds Mixing ...... 210
9.1.3 Fluidized Bed Combustion ....................... 212
9.1.4 Fluidized Bed Combustion Modeling .............. 212
9.2 Heterogeneous and Homogeneous Kinetics ................ 212
9.2.1 Homogeneous Kinetics ........................... 213
9.2.1.1 Global Homogeneous Combustion
Kinetics .............................. 213
9.2.1.2 Microkinetic Combustion Models ........ 213
9.2.1.3 Reduced GRI Mechanism ................. 214
9.2.2 Combined Homogeneous and Heterogeneous
Kinetics ....................................... 216
9.2.2.1 Inert Particles ....................... 216
9.2.2.1.1 Effect of Particle Size
Distribution and Alumina
Particles .................. 217
9.2.2.2.1 CO Production .............. 218
9.2.2.2 Kinetics for Methane Combustion in
Inert Particles ....................... 218
9.2.2.3 Combustion Catalysts .................. 220
9.2.2.4 Oxygen Carriers ....................... 221
9.3 Mixing in Gas/Solid Fluidized Beds .................... 221
9.3.1 Superficial Gas Velocity and Bubble Size ....... 221
9.3.2 Particle Size .................................. 221
9.3.3 Effect of Baffles .............................. 222
9.3.4 Sparger Flow Pattern for Non-Premixed
Operation ...................................... 222
9.4 Methane Fluidized Bed Combustion ...................... 225
9.4.1 Inert Particles ................................ 226
9.4.1.1 Fluidized Bed Temperature ............. 226
9.4.1.2 Bubble Size and Air-to-Fuel Ratio ..... 227
9.4.1.3 Fluidization Regime ................... 227
9.4.1.4 CO Formation .......................... 227
9.4.1.5 NOx Formation ......................... 229
9.4.1.6 Particle Type and Size ................ 230
9.4.2 Combustion Catalysts ........................... 230
9.4.3 Oxygen Carriers/Chemical-Looping Combustion .... 230
9.5 Fluidized Bed Combustion Modeling ..................... 230
9.5.1 Single-Phase Models ............................ 231
9.5.2 Two-Phase Models ............................... 231
9.5.2.1 Model of Davidson and Harrison ........ 231
9.5.2.2 Bubbling Bed Models ................... 232
9.5.2.3 Bubble Assemblage Models .............. 232
9.5.2.4 Multiple Region Models ................ 232
9.5.2.4.1 Models for the Grid
Region ..................... 232
9.5.2.4.2 Models for the Freeboard
Region ..................... 232
9.5.3 Kinetic Models ................................. 232
References ................................................. 233
10 Mild Combustion ............................................ 237
Mariarosaria de Joannon, Pino Sabia, and Antonio
Cavaliere
10.1 Introduction .......................................... 237
10.2 Definition and Properties ............................. 237
10.3 Main Effects of Operative Conditions .................. 241
10.3.1 Combustion Chamber Properties .................. 241
10.3.2 Pollution Reduction/Abatement-Effect of
Diluent Nature ................................. 243
10.4 Identification of Basic Processes in MILD
Combustion ............................................ 246
10.5 Applications in Industry .............................. 250
10.5.1 Energy Conversion Plants ....................... 251
10.5.2 Material Treatment ............................. 252
10.5.3 Pollution Abatement ............................ 253
10.6 Summary and Outlook ................................... 254
References ................................................. 255
11 Underground Coal Gasification: A Clean Coal Technology ..... 257
Preeti Aghalayam
11.1 Introduction .......................................... 257
11.2 Brief Overview of UCG Field Trials and Practice ....... 258
11.3 Mathematical Models for UCG ........................... 260
11.3.1 Fundamental Studies Related to UCG ............. 261
11.3.1.1 Chemical Reactions .................... 261
11.3.1.2 Thermomechanical Spalling and Cavity
Growth ................................ 264
11.3.1.3 Flow Patterns in the UCG Cavity ....... 264
11.3.2 Process Models for UCG ......................... 265
11.3.2.1 Reactions-Based Models ................ 266
11.3.2.2 Flow Pattern Based Models ............. 269
11.3.2.3 Combination Models .................... 270
11.4 Outlook ............................................... 271
11.5 Summary ............................................... 272
References ................................................. 272
12 Energy from Aquatic Biomass ................................ 277
Michele Aresta and Angela Dibenedetto
12.1 Introduction .......................................... 277
12.2 Energy from Terrestrial Biomass ....................... 279
12.3 The Aquatic Biomass Option: Perspectives and
Barriers to Exploitation .............................. 281
12.4 Properties of Aquatic Biomass ......................... 282
12.4.1 Microalgae ..................................... 282
12.4.2 Macroalgae ..................................... 284
12.4.3 Plants ......................................... 286
12.5 Growing Conditions .................................... 286
12.5.1 Cultures of Microalgae ......................... 286
12.5.2 Cultures of Macroalgae and Plants .............. 288
12.6 Harvesting of Aquatic Biomass ......................... 288
12.6.1 Technologies for Harvesting Microalgae ......... 289
12.6.2 Technologies for Harvesting Macroalgae and
Plants ......................................... 290
12.7 Aquatic Biomass Composition ........................... 290
12.8 Technologies for Biofuel Production ................... 291
12.8.1 Production of Biodiesel ........................ 292
12.8.1.1 Extraction of Biooil from Aquatic
Biomass ............................... 293
12.8.1.2 Biooil Content of Aquatic Biomass ..... 293
12.8.1.3 Quality of Biooil ..................... 295
12.8.1.4 Conversion of Biooil into Biodiesel ... 296
12.8.2 Production of Bioalcohol ....................... 298
12.8.3 Production of Biogas ........................... 299
12.8.4 Production of Biohydrogen ...................... 299
12.9 Methodology for Assessment of the Value of Aquatic
Biomass ............................................... 300
12.10 Economics of the Production of Biofuels from
Aquatic Biomass: Some Considerations ................. 301
References ................................................. 302
13 Flameless Pulverized Coal Combustion ....................... 307
Hannes Stadler and Reinhold Kneer
13.1 Introduction .......................................... 307
13.1.1 Development of Flameless Pulverized Coal
Combustion ..................................... 308
13.2 Theory ................................................ 309
13.2.1 Aerodynamic Aspects ............................ 310
13.2.2 Temperature Distribution ....................... 312
13.2.3 Characterization of the Reaction Zone .......... 313
13.2.4 Burnout ........................................ 314
13.2.5 NOx Emissions .................................. 314
13.2.5.1 Fuel-NO ............................... 314
13.2.5.2 Thermal NO ............................ 315
13.2.5.3 Reburning of NO ....................... 315
13.2.6 Radiation ...................................... 315
13.2.7 Definition of Flameless Combustion ............. 316
13.3 Fields of Application of Flameless Coal Combustion .... 316
13.3.1 Single Burner Systems .......................... 316
13.3.2 Novel Furnace Designs for Flameless Coal
Combustion ..................................... 317
13.3.3 Flameless Coal Combustion in Reburning
Furnaces ....................................... 318
13.3.4 Flameless Coal Combustion in a O2/CO2
Atmosphere ..................................... 318
13.4 Summary ............................................... 319
References ................................................. 319
14 Warm Discharges for Fuel Conversion ........................ 323
Alexander Gutsol
14.1 Introduction .......................................... 323
14.1.1 Fuel Conversion ................................ 323
14.1.2 Thermal, Cold, and Warm Plasma ................. 325
14.2 Industrial Fuel Conversion Using Thermal Plasma ....... 327
14.3 Warm Plasma for Plasma-Assisted Partial Oxidation
(PAPO) ................................................ 331
14.3.1 Low current (Gliding) Arcs and Glow
Discharges ..................................... 334
14.3.2 Microwave Discharges for PAPO and Plasma
Catalysis ...................................... 339
14.4 Warm Plasma for Other Fuel Conversion Processes ....... 342
14.5 Outlook ............................................... 345
14.6 Summary ............................................... 346
References ................................................. 347
15 Metal-Halocarbon Pyrolant Combustion ....................... 355
Ernst-Christian Koch
15.1 Introduction .......................................... 355
15.2 Characterization of Pyrolants ......................... 356
15.2.1 Thermochemical Properties of Constituents ...... 356
15.2.1.1 Polytetrafluoroethylene (PTFE) ........ 356
15.2.1.2 Poly(Carbon Monofluoride) (PMF) ....... 358
15.2.1.3 Vinylidene Fluoride Based
Copolymers ............................ 358
15.2.1.4 Hexachloroethane (HC) and
Hexachlorobenzene (HCB) ............... 359
15.2.2 Thermochemistry of Pyrolants ................... 359
15.3 Ignition and Propagation .............................. 364
15.3.1 Ignition ....................................... 364
15.3.2 Propagation .................................... 368
15.4 Combustion Phenomenology and Spectroscopy ............. 372
15.5 Technical Applications ................................ 375
15.5.1 SHS ............................................ 375
15.5.2 IRCM - Flares .................................. 384
15.5.3 Metal-Halocarbon Obscurants .................... 389
15.6 Safety ................................................ 394
15.7 Outlook ............................................... 396
References ................................................. 397
16 Control of Acoustically Coupled Combustion Instabilities ... 403
Sébastien Ducruix, Thierry Schuiier, Daniel Durox, and
Sébastien Candel
16.1 Introduction .......................................... 403
16.2 Fundamentals of Acoustics for Reacting Flows .......... 404
16.2.1 Acoustic Modes in Confined Environments ........ 407
16.2.2 Acoustic-Flame Interactions .................... 409
16.2.3 Acoustic Energy Balance ........................ 410
16.2.4 Conclusions on Control Strategies .............. 411
16.3 Passive Control Methods ............................... 412
16.3.1 Sound Absorption by Acoustic Liners ............ 414
16.3.2 Quarter Wave Tubes ............................. 416
16.3.3 Helmholtz Resonators ........................... 417
16.3.3.1 Helmholtz Resonator Equations ......... 417
16.3.3.2 Frequency Response Curve .............. 419
16.4 Flame Dynamic Control Methods ......................... 420
16.4.1 Introduction ................................... 420
16.4.2 Global Modification of the Flame Geometry ...... 421
16.5 Active Control Methods ................................ 426
16.5.1 Sensors В ...................................... 428
16.5.2 Actuators A .................................... 428
16.5.3 Active Control Algorithms V .................... 429
16.6 Conclusions ........................................... 431
References ................................................. 432
17 Combustion Synthesis ....................................... 439
Stefania Specchia, Elisabetta Finocchio, Guido Busca, and
Vito Specchia
17.1 Introduction .......................................... 439
17.2 Theory ................................................ 441
17.2.1 Self-Propagating High Temperature Synthesis
(SHS) .......................................... 441
17.2.2 Solid-State Metathesis (SSM) ................... 442
17.2.3 Flame Synthesis (FS) ........................... 442
17.2.4 Solution Combustion Synthesis (SCS) of Oxide
Materials using Redox Compounds and Mixtures ... 442
17.3 Applications in Research .............................. 456
17.3.1 In Situ SCS of Pd/LaMn03 Catalysts for
Compressed NG (CNG) Vehicles Exhaust
Treatment ...................................... 456
17.3.2 In Situ SCS of Pd/CeO2-2Zr02 Catalysts for NG
Combustion in Domestic Boilers ................. 459
17.3.3 In Situ SCS of Pt/Al203-3A Zeolite Catalysts
on Metallic Micro-Channel Plates for CO
Preferential Oxidation in Fuel Processors ...... 464
17.4 Outlook ............................................... 467
17.5 Summary ............................................... 469
References ................................................. 470
18 C02 Sequestration from Combustion Sources .................. 473
Sadhana S. Rayalu, Pravin Jadhav, and Nitin Labhasetwar
18.1 Introduction .......................................... 473
18.1.1 Preamble ....................................... 473
18.1.2 Sources of CO2 Emissions ....................... 475
18.1.3 COz Inventory and Emission Projections ......... 475
18.1.3.1 Global CO2 Emission Scenario .......... 475
18.1.3.2 CO2 Emissions Scenario in India ....... 476
18.2 Emissions from Combustion Sources ..................... 477
18.3 Impacts of Increased CO2 Emissions (Global Warming,
Climate Change, and Related Impacts) .................. 478
18.4 CO2 Capture from Combustion Sources ................... 481
18.4.1 CO2 Capture Methods ............................ 481
18.4.1.1 Pre-Combustion Capture ................ 482
18.4.1.2 Oxy-Fuel Combustion ................... 482
18.4.1.3 Post Combustion CO2 Capture
Techniques ............................ 482
18.4.1.3.1 Chemical Absorption ........ 483
18.4.1.3.2 Physical Absorption ........ 484
18.4.1.3.3 Membrane Separation ........ 485
18.4.1.3.4 Cryogenic Separation ....... 485
18.4.1.3.5 Adsorption ................. 485
18.4.2 CO2 Emissions from the Transport Sector ........ 489
18.5 CO2 Sequestration ..................................... 490
18.5.1 Importance of Carbon Sequestration ............. 490
18.5.2 Geological Sequestration ....................... 492
18.5.3 Mineral Carbonation ............................ 492
18.5.3.1 Research Interests in Mineral Carbonation .... 495
18.5.4 Injection into Active Oil Wells ................ 495
18.5.5 CO2 Sequestration through Forests .............. 496
18.5.6 Soil Sequestration ............................. 496
18.5.7 Oceanic Sequestration .......................... 497
18.5.7.1 Shallow Ocean Sequestration ........... 498
18.5.7.2 Deep Ocean Sequestration .............. 498
18.5.8 Industrial Use of CO2 .......................... 499
18.5.9 Biological Conversion into Fuel ................ 499
18.6 Enhanced Natural Sequestration Processes .............. 500
18.6.1 Enhanced Humification .......................... 500
18.6.2 Marine Sequestration ........................... 500
18.6.3 Biomimetic Sequestration of CO2 ................ 500
18.6.4 Biomineralization .............................. 501
18.6.5 Biomass to Pyrogenic Carbon and Hydrogen ....... 502
18.7 Niche Technologies for Carbon Sequestration ........... 502
18.7.1 Biomass Management ............................. 503
18.7.2 Catalytic and Photocatalytic Conversion of
CO2 ............................................ 503
18.7.3 Biocatalysts for CO2 Transformation ............ 504
18.8 CCS Guidelines ........................................ 504
18.9 Carbon Capture and Sequestration and Clean
Development Mechanism ................................. 505
18.10 Summary and R&D Opportunities ........................ 506
18.10.1 Improved Mineral Carbonation .................. 506
18.10.2 Enhancing the Natural Terrestrial
Sequestration ................................. 506
18.10.3 Sequestration in the Oceans ................... 506
18.10.4 Sequestration in Geologic Formations .......... 507
18.10.5 Advanced Bioengineering Processes ............. 508
18.10.6 Advanced Nanotechnological and Chemical
Approaches .................................... 508
18.11 Conclusion ........................................... 509
References ................................................. 510
19 Overview of Oxy-Combustion Technologies with Pure Oxygen
and Chemical Looping Combustion ............................ 517
Ben Anthony and Ali Hotei't
19.1 Introduction .......................................... 517
19.2 Chemical Looping Combustion ........................... 517
19.2.1 CLC Theory and Applications .................... 518
19.2.2 CLC Outlook .................................... 523
19.3 Potential for Oxy-fuel in Fluidized Bed Combustion .... 524
19.3.1 Brief Overview of FВС Technology
Developments ................................... 524
19.3.2 Advantages of Oxy-fuel Technology .............. 525
19.3.3 Oxy-fuel FBC Pilot Plant Developments .......... 526
19.3.3.1 Early Lessons from Pilot Plant
Units ................................. 526
19.3.4 NOx Emissions from the CanmetEnergy Tests ...... 531
19.3.5 Other Lessons from CanmetEnergy R&D on
Oxy-fuel Firing ................................ 533
19.3.6 Future Demonstration Projects .................. 535
19.4 Conclusions ........................................... 537
References ................................................. 537
20 Combustion of Pulverized Fuel in a CO2 Atmosphere .......... 543
Dobrin Toporov, Make Förster, and Reinhold Kneer
20.1 Introduction .......................................... 543
20.2 Theoretical Principles of Burning Pulverized Fuel in
a CO2-Rich Atmosphere ................................. 544
20.2.1 Properties of CO2 .............................. 545
20.2.2 CO2 Effects on Homogeneous Reaction Rates ...... 546
20.2.3 CO2 Effects on Devolatilization and Particle
Ignition ....................................... 546
20.2.4 CO2 Effects on Heterogeneous Reaction Rates .... 547
20.2.4.1 Boudoard Reaction ..................... 547
20.2.4.2 Mathematical Description of
Gasification Reaction Rates ........... 548
20.3 Current Research ...................................... 552
20.3.1 Burner Design and Flame Stability .............. 552
20.3.2 Emissions during Oxy-Combustion of Pulverized
Fuel ........................................... 553
20.3.2.1 NOx ................................... 553
20.3.2.2 S02 ................................... 554
20.3.2.3 Mercury ............................... 554
20.3.2.4 Ash Composition ....................... 555
20.3.3 Heat Transfer .................................. 555
20.3.3.1 Radiative Properties of CO2 and H20 ... 556
20.3.3.2 Dry and Wet Recycle and the Effect
on the Radiative Heat Transfer ........ 557
20.3.3.3 Dry and Wet Recycle and the Effect
on the Convective Heat Transfer ....... 560
20.4 Outlook ............................................... 561
20.5 Summary ............................................... 561
References ................................................. 562
21 Energy Conversion Processes with C02-Separation
Not Reducing Efficiency .................................... 567
Reinhard Leithner
21.1 Introduction .......................................... 567
21.2 C02-Emission Dependency on Fuel and Cycle
Efficiency ............................................ 567
21.3 C02-Separation Methods ................................ 569
21.3.1 Post Combustion C02-Separation Processes
Avoiding Efficiency Losses or Gaining Higher
Efficiencies ................................... 570
21.3.2 Pre-combustion CO2 Separation with High
Efficiency ..................................... 572
21.3.3 Energy Conversion Processes with Intrinsic
Air Separation ................................. 575
21.3.3.1 Metal Oxide Cycles - MOCs ............. 575
21.3.3.2 Oxygen Ions Transporting Membrane
Cycles - OITMCs ....................... 576
21.4 CO2 Sequestration by Carbonation ...................... 579
21.5 Carbon Capture and Sequestration - Cost Estimations ... 580
21.6 Outlook ............................................... 581
21.7 Summary ............................................... 582
References .................................................... 582
Index ......................................................... 585
Glossary ...................................................... 607
|