Preface ........................................................ XV
About the Editors ............................................ XVII
List of Contributors .......................................... XXI
List of Abbreviations ....................................... XXIII
List of Symbols ............................................. XXVII
Synopsis Volume 3 ........................................... XXXIX
1 Overview of Caseous Fuels .................................... 1
Anuradda Canesh
1.1 Introduction ............................................ 1
1.2 Classification of Gaseous Fuels ......................... 1
1.2.1 Naturally Occurring Gases ........................ 2
1.2.1.1 Natural Gas ............................. 2
1.2.1.2 Coal Bed Methane (CBM) .................. 2
1.2.1.3 Methane Clathrates ...................... 3
1.2.1.4 Liquefied Petroleum Gas ................. 3
1.2.2 Synthesis Gases .................................. 4
1.2.2.1 Biogas and Landfill Gas ................. 4
1.2.2.2 Producer Gas, Synthesis Gas and, Blue
Gas ..................................... 5
1.2.2.3 Hydrogen ................................ 6
1.2.3 By-Product Gases ................................. 6
1.2.3.1 Blast Furnace Gas ....................... 6
1.2.3.2 Coke Oven Gas ........................... 7
1.3 Properties of Gaseous Fuels ............................. 7
1.3.1 Calorific Value .................................. 7
1.3.2 Wobbe Number (Wo) ................................ 7
1.3.3 Laminar Flame Speed .............................. 9
1.3.4 Flammability Limits ............................. 10
1.3.5 Methane Number (MN) ............................. 11
1.3.6 Mixture Calorific Value (Hmix) .................. 12
1.4 Conclusion ............................................. 12
References .................................................. 13
2 Global Warming Implication of Natural Gas Combustion ........ 15
Jacob Ademola Sonibare
2.1 Introduction ........................................... 15
2.1.1 Energy Sources .................................. 16
2.1.2 Hydrocarbon Destruction in Gas Flares ........... 19
2.2 A Review of Global Warming Concept ..................... 22
2.2.1 Water Vapor ..................................... 24
2.2.2 Carbon Dioxide .................................. 24
2.2.3 Methane ......................................... 24
2.2.4 Nitrous Oxide ................................... 25
2.2.5 CFCs ............................................ 25
2.3 Fundamentals of Natural Gas Combustion ................. 25
2.4 World Natural Gas Reserves, Production, Consumption
and Destruction ........................................ 30
2.4.1 World Natural Gas Reserves ...................... 30
2.4.2 World Natural Gas Production .................... 32
2.4.3 World Natural Gas Consumption ................... 33
2.4.4 World Natural Gas Destruction ................... 37
2.5 Global Warming Contribution from Natural Gas
Combustion ............................................. 37
2.5.1 Global Warming Contribution from Natural Gas
Combustion in Energy Consumption ................ 37
2.5.2 Global Warming Contribution from Natural Gas
Combustion in Flaring Activities ................ 40
2.6 Control Measures for Global Warming from Natural Gas
Combustion ............................................. 42
2.7 Conclusion ............................................. 43
References .................................................. 43
3 Theory, Modeling and Computation of Gas Explosion
Phenomena ................................................... 49
Almerinda Di Benedetto and Valeria Di Sarli
3.1 Introduction ........................................... 49
3.2 Modeling and Computation of Explosion Phenomena ........ 51
3.2.1 Overview of CFD Approaches ...................... 51
3.2.2 LES for Explosion Phenomena ..................... 54
3.2.2.1 LES Model Equations .................... 54
3.2.2.2 Sub-Grid Scale (sgs) Models for
Stress Tensor and Scalar Fluxes ........ 57
3.2.2.3 Approaches for Sub-Grid Scale (sgs)
Combustion Rate ........................ 58
3.2.2.4 Numerics ............................... 60
3.3 Applications in Research ............................... 63
3.4 Applications in Industry ............................... 66
3.5 Outlook ................................................ 69
3.6 Conclusions ............................................ 70
References .................................................. 71
4 Eulerian (Field) Monte Carlo Methods for Solving PDF
Transport Equations in Turbulent Reacting Flows ............. 75
Vladimir Sabei'nikov and Olivier Soulard
4.1 Introduction ........................................... 75
4.2 PDF Equation of a Turbulent Reactive Scalar ............ 78
4.3 EMC Method for the Scalar PDF: Derivation of SPDEs ..... 80
4.3.1 Illustration of the Main Idea ................... 80
4.3.1.1 Turbulent Advection Acting Alone:
Unbounded Domain ....................... 80
4.3.1.2 Pure Turbulent Advection, Bounded
Domain: Impact of Boundary
Conditions ............................. 83
4.3.2 Derivation of the SPDEs ......................... 85
4.3.2.1 Non-Conservative Formulation ........... 85
4.3.2.2 Conservative Formulation ............... 88
4.4 Numerical Aspects ...................................... 89
4.4.1 Numerical Scheme ................................ 89
4.4.2 Boundary Conditions ............................. 90
4.4.3 Elementary Validation Tests ..................... 92
4.5 Hybrid EMC-RANS Algorithm .............................. 92
4.5.1 Governing Equations ............................. 92
4.5.2 Correction Algorithms ........................... 95
4.6 Simulation of a Backward-Facing Step with
a Hybrid EMC-RANS Algorithm ....................... 95
4.6.1 Configuration ................................... 96
4.6.2 Results and Discussion .......................... 96
4.7 Velocity-Scalar EMC Method ............................. 99
4.7.1 Velocity-Scalar PDF ............................. 99
4.7.2 Velocity-Scalar SPDEs .......................... 102
4.7.3 Numerical Scheme for the Velocity-Scalar EMC
Method ......................................... 103
4.7.4 Validation Tests ............................... 104
4.7.4.1 First Test: Riemann Problem ........... 104
4.7.4.2 Second Test: Return to Gaussianity .... 105
4.7.4.3 Third Test: Passive Scalar
Transport ............................. 108
4.7.4.4 Fourth Test: Auto-Ignition ............ 110
4.7.4.4.1 Stochastic Convergence ..... 111
4.7.4.4.2 Spatial Convergence ........ 113
4.8 Outlook ............................................... 113
4.9 Conclusion ............................................ 114
References ................................................. 118
5 Flame Lift-Off and Blow-Out Stability Limits and Their
Application in Gas Burners ................................. 121
Yajue Wu
5.1 Introduction .......................................... 121
5.2 Theoretical Analysis of Diffusion Flame Stability ..... 122
5.2.1 The Premixed Flame Propagation Model ........... 122
5.2.2 The Laminar Flamelet Model ..................... 125
5.2.3 The Large-Scale Structural Mixing Model ........ 126
5.2.4 Other Analysis ................................. 127
5.3 Jet Flame Stability in Cross-Wind ..................... 128
5.4 Comparison of Experimental Data with Predictions ...... 131
5.4.1 Lift-Off Height ................................ 131
5.4.2 Blow-Out Velocity .............................. 132
5.4.3 Hydrogen Flames ................................ 133
5.5 Application in Gas Burners ............................ 135
5.6 Outlook ............................................... 137
5.7 Conclusion ............................................ 138
References ................................................. 139
6 The Combustion of Low Heating Value Caseous Fuel
Mixtures ................................................... 141
Ghazi A. Karim
6.1 Introduction .......................................... 141
6.2 Stoichiometric and Thermodynamic Considerations ....... 142
6.3 Chemical Kinetic Considerations ....................... 148
6.4 Some Combustion Characteristics ....................... 152
6.5 Some Operational Considerations ....................... 159
6.6 Conclusion ............................................ 161
References ................................................. 161
7 Hydrogen Combustion and Emissions in a Sustainable
Energy Future .............................................. 165
Surest I.K. Aggarwal and Alejandro M. Briones
7.1 Introduction .......................................... 165
7.1.1 Background: Production, Storage and
Utilization .................................... 168
7.2 Theory and Applications in Research ................... 169
7.2.1 Chemical Kinetic Models ........................ 171
7.2.2 Explosion, Ignition, and Reaction Limits ....... 172
7.2.3 Ignition Characteristics: Ignition Delays and
Ignition Limits ................................ 175
7.2.4 Flammability Limits ............................ 178
7.2.5 Laminar Flames: Premixed, Non-Premixed and
Partially Premixed ............................. 179
7.2.6 Laminar Premixed Flames ........................ 179
7.2.6.1 Laminar Flame Speed ................... 181
7.2.6.2 Flame-Stretch Interactions ............ 185
7.2.6.3 Reaction Limits ....................... 187
7.2.6.4 Non-Premixed Flames ................... 188
7.2.6.5 Partially Premixed Flames (PPFs) ...... 191
7.2.7 Turbulent Ignition and Combustion .............. 194
7.2.8 Detonation in H2-Air Mixtures .................. 195
7.3 Applications in Industry .............................. 198
7.3.1 H2 Rocket Engines .............................. 198
7.3.2 H2 Gas Turbine Combustors ...................... 199
7.3.3 H2 Internal Combustion Engines ................. 201
7.4 Outlook ............................................... 203
7.5 Conclusion ............................................ 204
References ................................................. 205
8 Combustion in Gas-fueled Compression Ignition Engines
of the Dual Fuel Type ...................................... 213
Ghazi A. Karim
8.1 Introduction .......................................... 213
8.2 The Gas-Fueled Dual Fuel Engine ....................... 213
8.3 Dual Fuel Combustion .................................. 215
8.4 The Ignition Delay .................................... 218
8.5 Combustion Under Light Load Conditions ................ 221
8.6 Exhaust Emissions ..................................... 224
8.7 Knock in Dual Fuel Engines ............................ 226
8.8 Some Predictive Modeling .............................. 228
8.9 Some Design and Operational Considerations ............ 229
8.10 Conclusion ............................................ 233
References ................................................. 233
9 Fuel Gas Applications in Industry .......................... 237
Fernando Cörner da Costa
9.1 Introduction .......................................... 237
9.2 Industrial Heating Processes .......................... 239
9.3 Other Processes ....................................... 241
9.4 Applications in Steel Mills ........................... 242
9.4.1 Integrated Steel Mills ......................... 242
9.4.2 Non-Integrated Steel Mills ..................... 244
9.5 Applications in Foundries ............................. 245
9.5.1 Molding ........................................ 245
9.5.2 Melting ........................................ 246
9.5.3 Crucible or Pot Furnaces ....................... 246
9.5.4 Rotary Drum Furnaces ........................... 247
9.5.5 Reverberatory Furnaces ......................... 248
9.5.6 Cupola Furnaces ................................ 248
9.5.7 Electric Melting Furnaces ...................... 249
9.6 Applications in the Ceramic Industry .................. 250
9.6.1 Coarse Products ................................ 251
9.6.2 Refractory Bricks .............................. 251
9.6.3 Wall and Floor Tiles ........................... 252
9.6.4 Fine Ceramics .................................. 252
9.7 Applications in Glass Works ........................... 252
9.7.1 Glass Melting, Refining, and Conditioning ...... 253
9.7.2 Forming ........................................ 254
9.7.3 Annealing and Hardening ........................ 255
9.7.4 Decorating ..................................... 255
9.7.5 Packaging and Storage .......................... 256
9.8 Applications in Thermal Utilities ..................... 256
9.8.1 Cold Water and Cold Air ........................ 256
9.8.2 Hot Water and Superheated Water ................ 256
9.8.3 Saturated and Superheated Steam ................ 257
9.8.4 Heat Transfer Fluids ........................... 258
9.8.5 Hot Air ........................................ 258
9.9 Applications in the Rubber Industry ................... 259
9.10 Applications in the Food Industry ..................... 260
9.11 Applications in the Chemical and Pharmaceutical
Industries ............................................ 260
9.12 Applications of Synthetic Natural Gas ................. 260
9.13 Replacement of Electrothermy by Fuel Gas .............. 262
9.14 Conclusion ............................................ 262
References ................................................. 263
10 Overview of Liquid Fuels ................................... 265
Oliver van Rheinberg
10.1 Introduction .......................................... 265
10.1.1 Crude Oil and Refinery - Production of
Petroleum-Based Liquid Fuels ................... 266
10.1.1.1 Atmospheric Distillation .............. 266
10.1.1.2 Vacuum Distillation ................... 267
10.1.1.3 Thermal Cracking and Visbreaking ...... 267
10.1.1.4 Catalytic Cracking .................... 268
10.1.1.5 Hydrotreating ......................... 268
10.1.1.6 Hydrodesulfurization .................. 268
10.1.1.7 Hydrocracking ......................... 269
10.1.1.8 Hydrogenation ......................... 269
10.1.1.9 Isomerization and Catalytic
Reforming ............................. 270
10.1.1.10 Alkylation ........................... 270
10.1.1.11 Polymerization ....................... 270
10.1.2 Classification of Liquid Fuels ................. 270
10.1.2.1 Petroleum-Based Fuels ................. 270
10.1.2.2 Renewable Fuels ....................... 272
10.1.2.2.1 First Generation of
Renewable Fuels ............ 272
10.1.2.2.2 Second Generation of
Renewable Fuels ............ 272
10.1.3 Political Regulation and Directives ............ 273
10.2 Chemical and Physical Properties of Liquid Fuels ...... 277
10.2.1 Main Components of Petroleum-Based Fuels ....... 277
10.2.1.1 Aliphatic Hydrocarbons ................ 277
10.2.1.2 Aromatic Hydrocarbons ................. 278
10.2.1.3 Phenols ............................... 279
10.2.1.4 Physical and Chemical Properties of
Aliphatic and Aromatic Hydrocarbons ... 279
10.2.1.5 Sulfur Species ........................ 280
10.2.2 Gasoline and Common Renewable Fuels ............ 283
10.2.3 Diesel and Common Renewable Fuels .............. 287
10.2.4 Kerosene ....................................... 292
10.2.5 Marine and Residual Fuels ...................... 294
10.3 Stability of Fuels .................................... 295
10.3.1 Auto-Oxidation - Aging Mechanism of
Petroleum-Based Fuels .......................... 296
10.3.2 Aging Mechanism of Fatty Acid Methyl Esters .... 299
References ................................................. 302
11 Hydrogen-Assisted Combustion and Emission Characteristics
of Fossil Fuels ............................................ 305
Suresh K. Aggarwal
11.1 Introduction .......................................... 305
11.2 Theory and Applications in Research ................... 307
11.2.1 Hydrogen-Enhanced Ignition of Hydrocarbon
Fuels .......................................... 307
11.2.2 Effects of Hydrogen on Flammability Limits
and Extinction of Hydrocarbon Flames ........... 310
11.2.3 Laminar Flame Speeds of Hydrogen-Hydrocarbon-
Air Mixtures ................................... 314
11.2.4 Flame-Stretch Interactions and Cellular
Instability .................................... 320
11.2.5 Effect of Pressure on Flame-Stretch
Interactions and Cellular Instability .......... 326
11.2.6 Effect of Hydrogen on Flame-Stretch
Interactions and Cellular Instability .......... 331
11.2.7 Propagating Flames in Axisymmetric Coflowing
Jets: Effect of Hydrogen ....................... 336
11.2.8 Non-Premixed and Partially Premixed Hydrogen-
Hydrocarbon Flames ............................. 339
11.3 Applications in Industry .............................. 345
11.4 Oudook ................................................ 349
11.5 Conclusion ............................................ 350
References ................................................. 351
12 Liquid Biofuels: Biodiesel and Bioalcohols ................. 359
George Skevis
12.1 Introduction .......................................... 359
12.2 Biofuel Production and Processing ..................... 360
12.3 Physical and Chemical Properties of Biofuels .......... 363
12.4 Combustion Chemistry of Biofuels ...................... 367
12.5 Biofuel Combustion in Engines ......................... 376
12.6 Conclusion ............................................ 381
References ................................................. 382
13 Combustion in a Spark Ignition Engine ...................... 389
Alexey A. Burluka
13.1 Introduction .......................................... 389
13.2 Thermodynamic Modeling: Principles and Components ..... 391
13.2.1 Thermodynamic State of Burned and Unburned
Gases .......................................... 393
13.2.2 Equations Describing the State of the Charge ... 393
13.2.3 Models of Heat Transfer ........................ 396
13.2.4 Flow into Top Land Crevice and Blow-By ......... 396
13.2.5 Combustion Part of the Cycle ................... 397
13.2.6 Flame Geometry ................................. 398
13.2.7 Burning Rate ................................... 400
13.2.8 Zimont-Lipatnikov Model ........................ 400
13.2.9 Leeds Models ................................... 401
13.2.10 Burn-Up Time Scale ............................ 402
13.2.11 Laminar Burning Velocity ...................... 403
13.3 Turbulence Properties ................................. 404
13.3.1 Cyclic Variability ............................. 405
13.3.2 Model Assessment ............................... 406
13.4 Outlook ............................................... 408
13.5 Conclusion ............................................ 411
References ................................................. 412
14 Diesel Combustion .......................................... 415
Öivind Andersson
14.1 Introduction to the Diesel Engine ..................... 415
14.2 Combustion System Characteristics ..................... 418
14.3 Diesel Fuel Injection ................................. 421
14.3.1 Mechanical Systems ............................. 421
14.3.2 Electronic Systems ............................. 422
14.4 Diesel Engine Heat Release ............................ 424
14.5 Some Useful Theoretical Concepts ................. 426
14.5.1 Conceptual Model of Burning Diesel Jets ........ 426
14.5.2 Air Entrainment ................................ 427
14.5.3 Flame Lift-Off ................................. 429
14.6 Heavy Duty Combustion Systems ......................... 430
14.7 Light Duty Combustion Systems ......................... 432
14.7.1 Enhancing Late-Cycle Mixing .................... 433
14.7.2 Effects of Swirl and Bowl Geometry ............. 435
14.8 Means of in-Cylinder Emissions Control ................ 437
References ................................................. 439
15 Oil Outlook ................................................ 441
Torsten Clemens
15.1 Introduction .......................................... 441
15.2 Formation and Migration of Oil ........................ 441
15.3 Oil Reserves Classification ........................... 442
15.4 Oil Resources ......................................... 444
15.5 Oil Production History and Reserves Development ....... 447
15.6 Oil Production Forecast ............................... 449
15.6.1 Oil Production Based on Currently Producing
Fields ......................................... 450
15.6.2 Oil Production from Discovered Fields that
Will be Developed .............................. 451
15.6.3 Oil Production from Yet to be Found Fields ..... 451
15.6.4 Oil Production Due to Additional Enhanced Oil
Recovery (EOR) and Unconventional Oil
Production ..................................... 452
15.6.4.1 Oil Production from Natural Gas
Liquids ............................... 454
15.6.4.2 Implications of Increased Oil
Demand/Production ..................... 454
15.7 Impact of CO2 Emissions ............................... 455
15.8 Oil Price Outlook ..................................... 457
15.9 Discussion and Conclusion ............................. 458
References ................................................. 459
Index ......................................................... 461
|