Handbook of combustion; Vol.2: Combustion diagnostics and pollutants (Weinheim, 2010). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаHandbook of combustion. Vol.2: Combustion diagnostics and pollutants / ed. by M.Lackner, F.Winter, A.K.Agarwal: in 5 v. - Weinheim: Wiley-VCH, 2010. - xlvi, 565 p.: ill. - Incl. bibl. ref. - Ind.: p.547-565. - ISBN 978-3-527-32449-1
 

Оглавление / Contents
 
Preface ...................................................... XVII
About the Editors ............................................. XIX
List of Contributors ........................................ XXIII
Abbreviations ................................................ XXIX
Synopsis Volume 2 ............................................ XXXV

1  An Overview of Combustion Diagnostics ........................ 1
   Alfred Leipertz, Sebastian Pfadler, and Robert Schießl
   1.1  Introduction ............................................ 1
   1.2  Diagnostics in Combustion: Tasks and Requirements ....... 2
   1.3  Invasive Techniques ..................................... 5
        1.3.1  Temperature ...................................... 5
               1.3.1.1  Thermocouples ........................... 5
               1.3.1.2  Resistance Thermometry .................. 6
               1.3.1.3  Thermochrome Paintings .................. 6
        1.3.2  Flow Velocity .................................... 7
               1.3.2.1  Pitot Tubes ............................. 7
               1.3.2.2  Hot Wire Anemometry ..................... 7
               1.3.2.3  Ionization Probes ....................... 8
        1.3.3  Species Concentrations ........................... 8
               1.3.3.1  Flame Ionization Detectors .............. 8
               1.3.3.2  Chemiluminescence Detectors ............. 9
               1.3.3.3  Nondispersive Infrared Analysis ......... 9
               1.3.3.4  Gas Chromatography/Mass Spectrometry ... 10
        1.3.4  Pressure ........................................ 10
        1.3.5  Particulates .................................... 11
   1.4  Noninvasive Techniques ................................. 11
        1.4.1  Visualization Techniques ........................ 14
               1.4.1.1  Schlieren Techniques ................... 15
               1.4.1.2  Shadowgraphy ........................... 16
        1.4.2  Emission Spectroscopy ........................... 16
        1.4.3  Absorption Spectroscopy ......................... 18
        1.4.4  Laser-Induced Fluorescence ...................... 20
        1.4.5  Laser-Induced Phosphorescence ................... 20
        1.4.6  Scattering Techniques ........................... 21
               1.4.6.1  Mie Scattering ......................... 22
               1.4.6.2  Rayleigh Scattering .................... 24
               1.4.6.3  Raman Scattering ....................... 26
                        1.4.6.3.1  Linear Raman Scattering ..... 26
                        1.4.6.3.2  Polarization-Resolved
                                   Linear Raman Scattering ..... 27
                        1.4.6.3.3  Coherent Anti-Stokes-Raman
                                   Scattering .................. 28
        1.4.7  Laser-Induced Incandescence ..................... 29
        1.4.8  Miscellaneous Techniques ........................ 30
        1.4.9  Simultaneous Multidimensional and
               Multiparameter Laser Diagnostics ................ 31
   1.5  Interaction of Combustion Diagnostics, Theory, and
        Modeling ............................................... 35
   References .................................................. 37

2  GC/MS for Combustion and Pyrolysis Research ................. 51
   James Cizdziel and Wei-Yin Chen
   2.1  Introduction ........................................... 51
   2.2  Theory ................................................. 52
   2.3  Literature Review ...................................... 54
   2.4  Recent Applications of GC/MS in Combustion and
        Pyrolysis Research ..................................... 55
        2.4.1  Motored Engine Study of Diesel Fuel-Relevant
               Compounds and Premixed Ignition Behavior ........ 55
        2.4.2  Alteration of Organic Matter in Response to
               Ionizing Radiation: Implications for
               Extraterrestrial Sample Analysis ................ 57
        2.4.3  Identification of Historical Ink Ingredients .... 57
        2.4.4  Analysis of Deteriorated Rubber-Based,
               Pressure-Sensitive Adhesives .................... 58
        2.4.5  Determination of Ergosterol as an Indicator
               of Fungal Biomass ............................... 59
        2.4.6  Characterization and Evaluation of Smoke
               Tracers in Particulate Matter from Wildfires .... 59
        2.4.7  Trace Organic Species Emitted from Biomass
               Combustion and Meat Charbroiling Relative to
               Particle Size ................................... 60
        2.4.8  Conversion of Rice Husks and Sawdust to Liquid
               Fuel via Pyrolysis
        2.4.9  Coal Pyrolysis and Hydropyrolysis ............... 61
        2.4.10 Soot Formation in Combustion .................... 62
        2.4.11 Desorption of Surface Oxides up to 1100 °C ...... 62
        2.4.12 Temperature-Programmed Desorption of Young
               Chars up to 1650 °C ............................. 63
        2.4.13 Isotope-Labeling Techniques ..................... 65
        2.4.14 Mass Spectrometry in the Study of Fullerene ..... 69
   2.5  Outlook ................................................ 69
   2.6  Summary ................................................ 70
   References .................................................. 71

3  Combustion Characteristics of Fossil Fuels by Thermal
   Analysis Methods ............................................ 75
   Mustafa Versan Kok
   3.1  DSC, TG/DTG and DTA Studies on Coal Samples ............ 75
   3.2  DSC, TG/DTG and DTA Studies on Crude Oil
        Samples ................................................ 79
   3.3  DSC, TG/DTG and DTA Studies on Oil Shale
        Samples ................................................ 82
   3.4  Conclusions ............................................ 85
   References .................................................. 85

4  Gas Potentiometry: Oxygen-Based Redox Process Diagnostics
   in High-Temperature Environments ............................ 89
   Eyck Schotte, Bert Lemin, Heike Lorenz, and Helmut Rau
   4.1  Introduction ........................................... 89
   4.2  Theoretical Foundations of Gas Potentiometry ........... 90
        4.2.1  Physico-Chemical Measuring Principle ............ 90
        4.2.2  Solid Electrolytes .............................. 93
        4.2.3  Resume .......................................... 95
   4.3  GOP Applications in Research and Industry .............. 95
        4.3.1  Materials, Design, and Systems .................. 96
               4.3.1.1  Sensor Materials ....................... 96
                        4.3.1.1.1  Potentiometric Oxygen
                                   Concentration Measuring
                                   Chain ....................... 96
                        4.3.1.1.2  Thermocouples ............... 97
               4.3.1.2  GOP Designs ............................ 98
                        4.3.1.2.1  Mechanical Barriers
                                   (Plates, Tubes, Meshes)
                                   and Sensor Mounting ......... 99
                        4.3.1.2.2  Heating ..................... 99
                        4.3.1.2.3  Facilitating the
                                   Establishment of
                                   Equilibrium ................ 100
                        4.3.1.2.4  Protection Against
                                   Carburization .............. 100
                        4.3.1.2.5  Explosion Protection ....... 100
               4.3.1.3  Electrical Metrology .................. 100
               4.3.1.4  Response Time ......................... 100
        4.3.2  Analysis and Characterization of Gaseous and
               Liquid Fuel Combustion ......................... 101
               4.3.2.1  In Situ Measurement ................... 101
               4.3.2.2  On-Line Measurement (Off-Flame Gas
                        Potentiometric Measurement) ........... 106
        4.3.3  Analysis and Characterization of Solid Fuel
               Conversion ..................................... 107
               4.3.3.1  Gas Potentiometric Measurements in
                        Combustion and Gasification
                        Chambers .............................. 107
               4.3.3.2  Burn-Out Characteristics of Solid
                        Fuels, Biofuels, and Waste Materials
                        under Combustion and Gasification
                        Conditions ............................ 108
               4.3.3.3  Gas Potentiometric Combustion and
                        Gasification Analysis: Burn-Out
                        Characteristics and Fuel-Specific
                        Makrokinetic Parameters ............... 112
               4.3.3.4  Modeling to Determine Fuel-Specific
                        Makrokinetic Parameters ............... 113
               4.3.3.5  Resume ................................ 113
        4.3.4  Applications with Potential for Development .... 114
               4.3.4.1  The Performance of a Velocity-Oxygen
                        Probe ................................. 114
               4.3.4.2  Measurement of Fluid Dynamics in
                        a Fluidized-Bed Reactor ............... 115
               4.3.4.3  Feed Control in Solid Fuel
                        Gasification .......................... 116
               4.3.4.4  O2 Concentration Distribution in
                        a Fluidized-Bed Membrane Reactor ...... 118
        4.4  Outlook .......................................... 119
        4.5  Conclusions ...................................... 120
   References ................................................. 121

5  Spontaneous Raman Scattering Diagnostics: Applications
   in Practical Combustion Systems ............................ 125
   Jun Kojima and Quang-Viet Nguyen
   5.1  Introduction .......................................... 125
   5.2  Theory of SRS Signal Estimation ....................... 126
   5.3  Current Status in Multiscalar Diagnostics ............. 128
   5.4  Designing and Building an SRS System .................. 131
        5.4.1  Excitation System .............................. 131
               5.4.1.1  Laser Sources ......................... 131
               5.4.1.2  Pulse Stretching ...................... 132
               5.4.1.3  Probe Volume .......................... 134
        5.4.2  Spectroscopy System ............................ 136
               5.4.2.1  Scattering Collection ................. 136
               5.4.2.2  Spectrally Resolved Detection ......... 137
               5.4.2.3  Gating ................................ 138
               5.4.2.4  Optical Calibration ................... 143
        5.4.3  Data Reduction ................................. 143
               5.4.3.1  Raman Signal Calibration .............. 143
               5.4.3.2  Calibration Burners ................... 145
               5.4.3.3  Data Processing ....................... 146
               5.4.3.4  Example of Multiscalar Data in
                        Practical Combustion Systems .......... 146
        5.4.4  Flow Controller System Design .................. 148
               5.4.4.1  Flow meters ........................... 148
               5.4.4.2  Flow Control Software ................. 150
   5.5  Outlook ............................................... 150
   5.6  Summary ............................................... 151
   References ................................................. 152

6  CARS Spectroscopy .......................................... 155
   Michele Marrocco
   6.1  Introduction .......................................... 155
   6.2  Theory: Why is CARS So Sensitive to Temperature? ...... 157
   6.3  Theory: Interpretation of CARS Spectra ................ 159
   6.4  Molecular Parameters .................................. 164
   6.5  Experimental Set-Ups and Phase Matching ............... 167
   6.6  Typical Examples of Vibrational CARS Spectra: N2 and
        Other Simple Molecules ................................ 172
   6.7  General Applications .................................. 175
   6.8  Outlook ............................................... 179
   6.9  Summary ............................................... 182
   References ................................................. 183

7  Laser Doppler Anemometry ................................... 189
   Damien Blondel
   7.1  Introduction .......................................... 189
   7.2  Measurement Principles ................................ 190
        7.2.1  Laser Beam ..................................... 190
        7.2.2  Doppler Effect ................................. 191
        7.2.3  The Fringe Model ............................... 193
        7.2.4  Measurement Volume ............................. 194
        7.2.5  Backscatter versus Forward-Scatter LDA ......... 195
   7.3  System Description .................................... 197
        7.3.1  Optics ......................................... 198
        7.3.2  Two- and Three-Dimensional LDA for Two- and
               Three-Velocity Components ...................... 200
        7.3.3  Laser .......................................... 202
        7.3.4  Frequency Shift ................................ 202
   7.4  Seeding ............................................... 205
        7.4.1  Seeding as Flow Field Tracers .................. 206
        7.4.2  Light Scattering by Small Particles ............ 207
        7.4.3  Type and Size of Seeding Particles ............. 208
        7.4.4  Seeding Particles Generator .................... 208
   7.5  Signal Processing and Data Analysis ................... 209
        7.5.1  LDA Signals .................................... 209
        7.5.2  Moments ........................................ 211
        7.5.3  Weighting Factor ............................... 212
        7.5.4  Time, Length Scale, and Turbulence Velocity
               Spectra ........................................ 213
   7.6  Applications .......................................... 213
        7.6.1  Automotive Engines ............................. 214
        7.6.2  Large-Scale Burners ............................ 214
        7.6.3  Nonpremixed Turbulent Flame .................... 215
        7.6.4  Conditional Velocity in a Swirling Gas-Air
               Flame .......................................... 215
   7.7  Outlook ............................................... 215
        References ............................................ 216

8  Laser-Induced Fluorescence ................................. 219
   Alfred Leipertz, Andreas Braeuer, Johannes Kiefer,
   Andreas Dreizler, and Christof Heeger
   8.1  Introduction .......................................... 219
   8.2  Theory ................................................ 220
   8.3  LIF Applications ...................................... 223
        8.3.1  LIF of Combustion Species ...................... 223
        8.3.2  Tracer LIF ..................................... 225
               8.3.2.1  Metal Salts ........................... 225
               8.3.2.2  Inorganic Molecules ................... 227
               8.3.2.3  Organic Molecules ..................... 227
               8.3.2.4  Aliphatic Molecules ................... 227
        8.3.3  High-Speed LIF ................................. 228
        8.3.4  Combined LIF Techniques ........................ 230
   8.4  Instrumentation ....................................... 231
        8.4.1  Excitation Sources ............................. 231
        8.4.2  Detection Strategies ........................... 233
   8.5  Outlook and Summary ................................... 235
        References ............................................ 236

9  Measurement of Particle Properties: Concentration, Size
   Distribution and Density ................................... 243
   Matthias Gaderer, Robert Kunde, and Christian Brandt
   9.1  Introduction .......................................... 243
   9.2  Techniques of Particle Measurement .................... 243
        9.2.1  Properties of Particulate Matter ............... 244
               9.2.1.1  Equivalent Diameters .................. 244
                        9.2.1.1.1  Aerodynamic Diameter ....... 244
                        9.2.1.1.2  Diffusion Equivalent
                                   Diameter ................... 244
                        9.2.1.1.3  Mobility Diameter .......... 244
                        9.2.1.1.4  Optic Equivalent
                                   Diameter ................... 245
               9.2.1.2  Common Units .......................... 245
               9.2.1.3  Difficulties .......................... 245
               9.2.1.4  Sampling .............................. 246
                        9.2.1.4.1  Homogeneity ................ 246
                        9.2.1.4.2  Isokinetic Sampling ........ 246
                        9.2.1.4.3  Transport Losses ........... 246
                        9.2.1.4.4  Humidity ................... 247
                        9.2.1.4.5  Calibration ................ 247
               9.2.1.5  Dilution Techniques ................... 247
                        9.2.1.5.1  Dilution Tunnel ............ 247
                        9.2.1.5.2  Ejector Diluter ............ 249
                        9.2.1.5.3  Porous Tube Diluter ........ 249
                        9.2.1.5.4  Rotating Disk Diluter ...... 250
                        9.2.1.5.5  Preventing Nucleation and
                                   Condensation ............... 250
        9.2.2  Concentration Measurements ..................... 250
               9.2.2.1  Gravimetric Mass Concentration
                        Measurement ........................... 251
                        9.2.2.1.1  Filters .................... 252
                        9.2.2.1.2  Impactor ................... 253
                        9.2.2.1.3  Conditioning, Handling,
                                   and Interpretation of
                                   Filters .................... 254
               9.2.2.2  In-Situ Mass Concentration
                        Measurements with TEOM ................ 255
               9.2.2.3  In-Situ Number Concentration
                        Measurements .......................... 256
                        9.2.2.3.1  Condensation Nuclei
                                   (Particle) Counter ......... 256
                        9.2.2.3.2  Optical or Laser Particle
                                   Counters ................... 257
        9.2.3  Size Distribution Measurement .................. 258
               9.2.3.1  Gravimetric Size Distribution
                        Measurement with Cascade Impactors .... 258
               9.2.3.2  In Situ Size Distribution
                        Measurement ........................... 259
                        9.2.3.2.1  Electrical Low-Pressure
                                   Impactor (ELPI) ............ 259
                        9.2.3.2.2  Scanning Mobility
                                   Particle Sizer (SMPS) ...... 260
                        9.2.3.2.3  Aerodynamic Particle
                                   Sizer (APS) ................ 262
                        9.2.3.2.4  Fast Mobility Particle
                                   Sizer (FMPS) ............... 263
                        9.2.3.2.5  Diffusion Size Classifier
                                   (DiSC) ..................... 263
                        9.2.3.2.6  White-Light-Scattering
                                   Analyzers .................. 264
                        9.2.3.2.7  Aerosol Mass Spectrometry
                                   (AMS) and Aerosol-Time-
                                   of-Flight-Mass
                                   Spectrometry (ATOFMS) ...... 264
   9.3  Particles from Biomass Combustion ..................... 265
        9.3.1  Particle Formation ............................. 266
        9.3.2  Typical Size Distribution on Biomass
               Combustion ..................................... 267
        9.3.3  Particle Density ............................... 268
               9.3.3.1  Definition of Density ................. 269
               9.3.3.2  Calculation Theory .................... 269
               9.3.3.3  Calculation Experience and Results .... 269
   References ................................................. 271

10 Ultrafast Fluorescence Anisotropy for Combustion-
   Produced Nanoparticles Analysis ............................ 273
   Annalisa Bruno, Corrado de Lisio, and Patrizia Minutolo
   10.1 Introduction .......................................... 273
   10.2 Time-Resolved Fluorescence Polarization Anisotropy .... 275
   10.3 Experimental .......................................... 277
        10.3.1 The Ex-Situ Set-Up ............................. 277
        10.3.2 The In-Situ Set-Up ............................. 280
   10.4 Results ............................................... 282
        10.4.1 Ex-Situ ........................................ 282
        10.4.2 In-Situ Experimental Results ................... 285
        10.5 Conclusions ...................................... 287
   References ................................................. 288

11 Formation and Diagnostics of Sprays in Combustion .......... 291
   Terrence R. Meyer, Michael Brear, Seong Ho Jin, and
   James R. Cord
   11.1 Introduction .......................................... 291
        11.1.1 Motivation for Spray Combustion Measurements ... 291
        11.1.2 Overview of Spray Regimes and Implications
               for Measurement Techniques ..................... 293
        11.1.3 Scope, Objectives, and Organization ............ 294
   11.2 Nonimaging Spray Diagnostics .......................... 294
        11.2.1 Mie Scattering for Single Particle Counting .... 295
        11.2.2 Phase-Doppler Interferometry for Measuring
               Droplet Size and Velocity ...................... 295
        11.2.3 Diffraction Measurements for Ensemble-
               Averaged Size Statistics ....................... 298
        11.2.4 Extinction-Based Tomography for Measuring
               Surface Area in a Spray ........................ 298
   11.3 Spray Imaging ......................................... 300
        11.3.1 Holography ..................................... 301
        11.3.2 Planar Mie Scattering .......................... 302
        11.3.3 Planar Laser-Induced Fluorescence .............. 303
        11.3.4 Laser Sheet Dropsizing with Combined PLIF and
               Mie Scattering ................................. 306
        11.3.5 Time-Averaged and Instantaneous X-Ray
               Imaging ........................................ 310
        11.3.6 Conventional Shadowgraphy and Time-Gated
               Ballistic Photon Imaging ....................... 311
   11.4 Spray Combustion ...................................... 313
   11.5 Summary and Outlook ................................... 316
   References ................................................. 318

12 Measurements in Large Power Plants ......................... 323
   Dagmarjuchelková, Helena Raclavská, and Konstant'm
   Raclavský
   12.1 Introduction .......................................... 323
        12.1.1 Technologies for Combined Combustion ........... 324
   12.2 Applications .......................................... 328
        12.2.1 Color Measurements of Coal Combustion
               Products ....................................... 328
               12.2.1.1 The Color of Fly Ash and Possible
                        Influences on It ...................... 329
               12.2.1.2 General Relationships between Color
                        and Properties of Fly Ashes ........... 333
               12.2.1.3 Examples of Color Measurements ........ 335
                        12.2.1.3.1 Trinec: Fluidized-Bed
                                   Combustion ................. 335
                        12.2.1.3.2 Detmarovice: Dry-Bottom
                                   Boiler ..................... 336
                        12.2.1.3.3 Trebovice:
                                   Desulfurization, Slag-Tap
                                   Furnace .................... 338
                        12.2.1.3.4 Flue Gas Desulfurization
                                   Gypsum ..................... 338
        12.2.2 Special Measurement of Alternative Sorbents .... 340
               12.2.2.1 Caustification Sludge from Paper
                        Mill Production ....................... 340
               12.2.2.2 Saturation Sludge from Sugar
                        Industry .............................. 341
               12.2.2.3 Limestone VFK 55TM and VFK 80TM ........ 342
               12.2.2.4 Utilization of Alternative Sorbent
                        for Desulfurization ................... 343
                        12.2.2.4.1 Fixed-Bed Reactor Tests .... 343
                        12.2.2.4.2 Tests on Models of
                                   Fluidized Furnace with
                                   Circulating Layer CFB ...... 344
                        12.2.2.4.3 Pilot- Scale 100 kW
                                   Fluidized Bubbling Bed
                                   Tests ...................... 346
                        12.2.2.4.4 Desulfurization Tests in
                                   a CFBC with Output Power
                                   Rated at 120 MW ............ 346
                        12.2.2.4.5 Desulfurization Test in
                                   a Powder Boiler with
                                   Output Power Rated at
                                   72.2 MW .................... 348
        12.2.3 Special Measurements Inside Boilers ............ 350
   12.3 Summary ............................................... 352
   References ................................................. 354

13 Carbon Monoxide ............................................ 357
   David Belcher
   13.1 Introduction and Key Physical Properties .............. 357
        1.3.2 Bonding and Structure ........................... 358
   13.3 Carbon Monoxide in the Research Laboratory and in
        Coordination Chemistry ................................ 360
   13.4 Commercial Uses of Carbon Monoxide .................... 362
        13.4.1 Gas Production ................................. 362
        13.4.2 Petrochemical/Polymer Production ............... 363
        13.4.3 The Refinement of Nickel ....................... 366
   13.5 Carbon Monoxide in Everyday Life: Its Consequences
        and Side Effects, Detection, and Elimination .......... 367
        13.5.1 Biological Effects of CO ....................... 367
        13.5.2 Vehicular Production of CO ..................... 368
        13.5.3 Catalytic Converters ........................... 368
        13.5.4 Industrial Applications of CO .................. 370
        13.5.5 Smoking and CO ................................. 370
        13.5.6 Domestic Appliances and CO Detection ........... 370
   13.6 Outlook ............................................... 373
   13.7 Summary ............................................... 373
   References ................................................. 373

14 CO2 Greenhouse Gas Formation and Capture ................... 375
   Hsunling Bat and Mani Karthik
   14.1 Introduction .......................................... 375
   14.2 The Formation of CO2 .................................. 376
        14.2.1 Formation During Complete Combustion ........... 376
        14.2.2 Formation During Incomplete Combustion ......... 379
        14.2.3 Estimation of CO2 Concentrations Based on
               the IPCC Method ................................ 382
   14.3 Reduction of CO2 Emissions from Combustion Sources .... 385
        14.3.1 Replacement of Hydrocarbon Fuels with
               Renewable Energies ............................. 385
        14.3.2 The CCS Technologies ........................... 387
               14.3.2.1 Post-Combustion Capture ............... 388
               14.3.2.2 Pre-Combustion Capture (IPCC-CCS) ..... 390
               14.3.2.3 Oxyfuel Combustion Capture ............ 390
               14.3.2.4 Transportation and Storage of CO2 ..... 391
   14.4 Emerging Technologies for CO2 Reduction ............... 391
        14.4.1 Emerging CO2 Capture Technologies .............. 392
               14.4.1.1 Absorption of CO2 ..................... 392
               14.4.1.2 Adsorption of CO2 ..................... 392
               14.4.1.3 Membrane Separation ................... 393
        14.4.2 Chemical Looping Combustion .................... 393
        14.4.3 Utilization of CO2 ............................. 394
   14.5 Outlook ............................................... 397
   14.6 Summary ............................................... 397
   References ................................................. 397

15 Soot and Soot Diagnostics by Laser-Induced Incandescence ... 403
   Alfred Leipertz and Johannes Kiefer
   15.1 Introduction .......................................... 403
   15.2 Soot Formation ........................................ 404
   15.3 Conventional Soot Diagnostics ......................... 407
        15.3.1 Probe Techniques ............................... 407
               15.3.1.1 Size-Probing Techniques ............... 407
               15.3.1.2 Mass Concentration Probing
                        Techniques ............................ 408
        15.3.2 Optical Techniques ............................. 409
   15.4 Laser-Induced Incandescence ........................... 410
        15.4.1 Fundamental Aspects of LII ..................... 410
        15.4.2 Primary Particle Size and Size Distribution .... 412
   15.5 LII Applications ...................................... 415
        15.5.1 Flame Measurements ............................. 416
        15.5.2 Technical Applications ......................... 416
   15.6 Summary and Outlook ................................... 418
   References ................................................. 419

16 Polycyclic Aromatic Hydrocarbons and Combustion ............ 425
   John Fetzer
   16.1 Introduction .......................................... 425
   16.2 Properties of PAHs .................................... 427
   16.3 Analytical Approaches for PAHs in Combustion
        Processes and Products ................................ 427
   16.4 Formation, Variation, and Occurrence of PAHs .......... 429
        16.4.1 Formation ...................................... 429
        16.4.2 Variation in PAHs Due to Combustion Source ..... 431
        16.4.3 Conventional Combustion of Plant Matter ........ 431
        16.4.4 Motor Vehicles ................................. 431
        16.4.5 Fuel Oil and Coal Burning ...................... 432
   16.5 Controlled Pyrolysis as a Means to Study Combustion ... 433
   References ................................................. 437

17 NOx Formation, Control and Reduction Techniques ............ 439
   Alexander A. Konnov, M. Tayyebjaved, Håkan Kassman, and
   Naseem Irfan
   17.1 Introduction .......................................... 439
   17.2 Theory Nitrogen Chemistry in Flames ................... 440
        17.2.1 Classification of the NOx Formation Routes ..... 440
               17.2.1.1 Direct Reactions of N2 with
                        Radicals .............................. 440
               17.2.1.2 Adduct Formation, and Reaction of
                        the Adduct with Radicals .............. 441
        17.2.2 The NNH Route .................................. 441
        17.2.3 New Developments in the Prompt-NO Mechanism .... 443
        17.2.4 Relative Importance of Different NO-Formation
               Routes in Flames ............................... 445
               17.2.4.1 Hydrogen Flames ....................... 445
               17.2.4.2 Flames of Hydrocarbons ................ 445
        17.2.5 Fuel-NO ........................................ 446
        17.2.6 NOx Reburning .................................. 446
   17.3 Applications in Research: NOx Control and Reduction ... 449
        17.3.1 Low-NOx Burners ................................ 449
        17.3.2 Flue Gas Recirculation ......................... 449
        17.3.3 Over-Fire Air .................................. 449
        17.3.4 SNCR ........................................... 450
               17.3.4.1 Ammonia-Based SNCR .................... 450
               17.3.4.2 Urea-Based SNCR ....................... 450
               17.3.4.3 Laboratory-Scale Studies on Urea
                        DeNOx ................................. 451
               17.3.4.4 Ammonium Carbonate-Based SNCR ......... 452
               17.3.4.5 Additive-Enhanced SNCR ................ 452
                        17.3.4.5.1 Ethylene Glycol ............ 453
                        17.3.4.5.2 Hydrocarbon ................ 453
                        17.3.4.5.3 Hexamethyltetramine and
                                   Furfural ................... 454
                        17.3.4.5.4 Oxygenated Additives ....... 454
                        17.3.4.5.5 Carbon Monoxide ............ 454
   17.4 Applications in Industry NOx Reduction Techniques ..... 455
        17.4.1 Pilot Scale Studies on Urea DeNOx .............. 455
        17.4.2 Full-Scale Studies on Urea DeNOx ............... 455
        17.4.3 Ammonium Sulfate-Based SNCR .................... 456
   17.5 Summary and Outlook ................................... 456
   References ................................................. 457

18 Catalytic Technology for Soot and Caseous Pollution
   Control .................................................... 465
   Olaf Deutschmann and Athanasios G. Konstandopoulos
   18.1 Introduction .......................................... 465
        18.1.1 Pollutant Emissions from Stationary Sources .... 465
        18.1.2 Pollutant Emissions from Mobile Sources ........ 467
               18.1.2.1 Spark-Ignition Internal Combustion
                        Engines ............................... 468
               18.1.2.2 Diesel-Operated Internal Combustion
                        Engines ............................... 468
   18.2 Catalytic Technology for Soot Pollution Control ....... 469
        18.2.1 Introduction ................................... 469
               18.2.1.1 Diesel Soot ........................... 469
               18.2.1.2 Diesel Particulate Filters ............ 471
        18.2.2 Soot Loading and Oxidation ..................... 472
               18.2.2.1 Soot Accumulation on the Filters ...... 473
               18.2.2.2 Soot Oxidation: DPF Regeneration ...... 475
        18.2.3 Catalytic Diesel Particulate Filters (CDPFs) ... 476
               18.2.3.1 Direct Soot Oxidation Catalysts ....... 476
               18.2.3.2 Deposition of Catalysts on Filters .... 478
               18.2.3.3 Fuel-Borne Catalysts .................. 478
        18.2.4 Assessment of DPF Technologies ................. 478
               18.2.4.1 Filtration Efficiency ................. 478
               18.2.4.2 Soot Loading .......................... 479
               18.2.4.3 Regeneration .......................... 481
                        18.2.4.3.1 Direct Soot Oxidation ...... 481
                        18.2.4.3.2 Combination of Direct
                                   Soot Oxidation Catalyst
                                   with Pt .................... 483
                        18.2.4.3.3 Conversion-Dependent
                                   Phenomena .................. 483
        18.2.5 Simulation Approaches .......................... 485
        18.2.6 Effect of Ash Accumulation ..................... 488
               18.2.6.1 Rapid Ash Aging Method ................ 489
               18.2.6.2 Ash Aging Simulation .................. 489
   18.3 Catalytic Technology for Gaseous Pollution Control .... 490
        18.3.1 Reduction of Gaseous Emissions from Mobile
               Sources ........................................ 490
               18.3.1.1 The Three-Way Catalyst (TWC) .......... 490
               18.3.1.2 Selective Catalytic Reduction of NOx
                        in Mobile Applications ................ 493
                        18.3.1.2.1 Introduction ............... 493
                        18.3.1.2.2 Pre-Catalyst Processes ..... 493
                        18.3.1.2.3 Catalytic Conversion of
                                   NOx by NH3 ................. 496
                        18.3.1.2.4 Alternate Catalysts ........ 497
                        18.3.1.2.5 Alternative Reducing
                                   Agents ..................... 497
               18.3.1.3 NOx Storage Catalysts ................. 498
                        18.3.2  Reduction of Gaseous
                                Emissions From Stationary
                                Sources ....................... 500
               18.3.2.1 Catalytic Technologies for NOx
                        Removal ............................... 500
               18.3.2.2 Technologies for Removal of Other
                        Emissions ............................. 503
   18.4 Outlook ............................................... 503
   References ................................................. 504

19 Corrosion .................................................. 511
   Renata Włodarczyk, Rafał Kobyłecki, and Zbigniew Bis
   19.1 Introduction .......................................... 511
        19.1.1 Corrosion ...................................... 512
        19.1.2 Corrosion Processes ............................ 513
        19.1.3 Subsurface Corrosion ........................... 514
        19.1.4 Corrosion in the Power Industry ................ 516
   19.2 Theory ................................................ 516
        19.2.1 Effect of Deposition on Corrosion Rate ......... 519
        19.2.2 Effect of Fuel Type on the Damage of Boiler
               Elements ....................................... 521
        19.2.3 Mechanism of Corrosion in the Presence of
               Superheated Steam .............................. 524
        19.2.4 Sulfate-Sulfide Corrosion Mechanism ............ 526
        19.2.5 Chloride Corrosion Mechanism ................... 528
   19.3 Applications in Research and Industry ................. 531
   19.4 Outlook ............................................... 538
   19.5 Summary ............................................... 541
   References ................................................. 542

Index ......................................................... 547


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:22:40 2019. Размер: 44,273 bytes.
Посещение N 2399 c 04.10.2011