Preface ...................................................... XVII
About the Editors ............................................. XIX
List of Contributors ........................................ XXIII
Abbreviations ................................................ XXIX
Synopsis Volume 2 ............................................ XXXV
1 An Overview of Combustion Diagnostics ........................ 1
Alfred Leipertz, Sebastian Pfadler, and Robert Schießl
1.1 Introduction ............................................ 1
1.2 Diagnostics in Combustion: Tasks and Requirements ....... 2
1.3 Invasive Techniques ..................................... 5
1.3.1 Temperature ...................................... 5
1.3.1.1 Thermocouples ........................... 5
1.3.1.2 Resistance Thermometry .................. 6
1.3.1.3 Thermochrome Paintings .................. 6
1.3.2 Flow Velocity .................................... 7
1.3.2.1 Pitot Tubes ............................. 7
1.3.2.2 Hot Wire Anemometry ..................... 7
1.3.2.3 Ionization Probes ....................... 8
1.3.3 Species Concentrations ........................... 8
1.3.3.1 Flame Ionization Detectors .............. 8
1.3.3.2 Chemiluminescence Detectors ............. 9
1.3.3.3 Nondispersive Infrared Analysis ......... 9
1.3.3.4 Gas Chromatography/Mass Spectrometry ... 10
1.3.4 Pressure ........................................ 10
1.3.5 Particulates .................................... 11
1.4 Noninvasive Techniques ................................. 11
1.4.1 Visualization Techniques ........................ 14
1.4.1.1 Schlieren Techniques ................... 15
1.4.1.2 Shadowgraphy ........................... 16
1.4.2 Emission Spectroscopy ........................... 16
1.4.3 Absorption Spectroscopy ......................... 18
1.4.4 Laser-Induced Fluorescence ...................... 20
1.4.5 Laser-Induced Phosphorescence ................... 20
1.4.6 Scattering Techniques ........................... 21
1.4.6.1 Mie Scattering ......................... 22
1.4.6.2 Rayleigh Scattering .................... 24
1.4.6.3 Raman Scattering ....................... 26
1.4.6.3.1 Linear Raman Scattering ..... 26
1.4.6.3.2 Polarization-Resolved
Linear Raman Scattering ..... 27
1.4.6.3.3 Coherent Anti-Stokes-Raman
Scattering .................. 28
1.4.7 Laser-Induced Incandescence ..................... 29
1.4.8 Miscellaneous Techniques ........................ 30
1.4.9 Simultaneous Multidimensional and
Multiparameter Laser Diagnostics ................ 31
1.5 Interaction of Combustion Diagnostics, Theory, and
Modeling ............................................... 35
References .................................................. 37
2 GC/MS for Combustion and Pyrolysis Research ................. 51
James Cizdziel and Wei-Yin Chen
2.1 Introduction ........................................... 51
2.2 Theory ................................................. 52
2.3 Literature Review ...................................... 54
2.4 Recent Applications of GC/MS in Combustion and
Pyrolysis Research ..................................... 55
2.4.1 Motored Engine Study of Diesel Fuel-Relevant
Compounds and Premixed Ignition Behavior ........ 55
2.4.2 Alteration of Organic Matter in Response to
Ionizing Radiation: Implications for
Extraterrestrial Sample Analysis ................ 57
2.4.3 Identification of Historical Ink Ingredients .... 57
2.4.4 Analysis of Deteriorated Rubber-Based,
Pressure-Sensitive Adhesives .................... 58
2.4.5 Determination of Ergosterol as an Indicator
of Fungal Biomass ............................... 59
2.4.6 Characterization and Evaluation of Smoke
Tracers in Particulate Matter from Wildfires .... 59
2.4.7 Trace Organic Species Emitted from Biomass
Combustion and Meat Charbroiling Relative to
Particle Size ................................... 60
2.4.8 Conversion of Rice Husks and Sawdust to Liquid
Fuel via Pyrolysis
2.4.9 Coal Pyrolysis and Hydropyrolysis ............... 61
2.4.10 Soot Formation in Combustion .................... 62
2.4.11 Desorption of Surface Oxides up to 1100 °C ...... 62
2.4.12 Temperature-Programmed Desorption of Young
Chars up to 1650 °C ............................. 63
2.4.13 Isotope-Labeling Techniques ..................... 65
2.4.14 Mass Spectrometry in the Study of Fullerene ..... 69
2.5 Outlook ................................................ 69
2.6 Summary ................................................ 70
References .................................................. 71
3 Combustion Characteristics of Fossil Fuels by Thermal
Analysis Methods ............................................ 75
Mustafa Versan Kok
3.1 DSC, TG/DTG and DTA Studies on Coal Samples ............ 75
3.2 DSC, TG/DTG and DTA Studies on Crude Oil
Samples ................................................ 79
3.3 DSC, TG/DTG and DTA Studies on Oil Shale
Samples ................................................ 82
3.4 Conclusions ............................................ 85
References .................................................. 85
4 Gas Potentiometry: Oxygen-Based Redox Process Diagnostics
in High-Temperature Environments ............................ 89
Eyck Schotte, Bert Lemin, Heike Lorenz, and Helmut Rau
4.1 Introduction ........................................... 89
4.2 Theoretical Foundations of Gas Potentiometry ........... 90
4.2.1 Physico-Chemical Measuring Principle ............ 90
4.2.2 Solid Electrolytes .............................. 93
4.2.3 Resume .......................................... 95
4.3 GOP Applications in Research and Industry .............. 95
4.3.1 Materials, Design, and Systems .................. 96
4.3.1.1 Sensor Materials ....................... 96
4.3.1.1.1 Potentiometric Oxygen
Concentration Measuring
Chain ....................... 96
4.3.1.1.2 Thermocouples ............... 97
4.3.1.2 GOP Designs ............................ 98
4.3.1.2.1 Mechanical Barriers
(Plates, Tubes, Meshes)
and Sensor Mounting ......... 99
4.3.1.2.2 Heating ..................... 99
4.3.1.2.3 Facilitating the
Establishment of
Equilibrium ................ 100
4.3.1.2.4 Protection Against
Carburization .............. 100
4.3.1.2.5 Explosion Protection ....... 100
4.3.1.3 Electrical Metrology .................. 100
4.3.1.4 Response Time ......................... 100
4.3.2 Analysis and Characterization of Gaseous and
Liquid Fuel Combustion ......................... 101
4.3.2.1 In Situ Measurement ................... 101
4.3.2.2 On-Line Measurement (Off-Flame Gas
Potentiometric Measurement) ........... 106
4.3.3 Analysis and Characterization of Solid Fuel
Conversion ..................................... 107
4.3.3.1 Gas Potentiometric Measurements in
Combustion and Gasification
Chambers .............................. 107
4.3.3.2 Burn-Out Characteristics of Solid
Fuels, Biofuels, and Waste Materials
under Combustion and Gasification
Conditions ............................ 108
4.3.3.3 Gas Potentiometric Combustion and
Gasification Analysis: Burn-Out
Characteristics and Fuel-Specific
Makrokinetic Parameters ............... 112
4.3.3.4 Modeling to Determine Fuel-Specific
Makrokinetic Parameters ............... 113
4.3.3.5 Resume ................................ 113
4.3.4 Applications with Potential for Development .... 114
4.3.4.1 The Performance of a Velocity-Oxygen
Probe ................................. 114
4.3.4.2 Measurement of Fluid Dynamics in
a Fluidized-Bed Reactor ............... 115
4.3.4.3 Feed Control in Solid Fuel
Gasification .......................... 116
4.3.4.4 O2 Concentration Distribution in
a Fluidized-Bed Membrane Reactor ...... 118
4.4 Outlook .......................................... 119
4.5 Conclusions ...................................... 120
References ................................................. 121
5 Spontaneous Raman Scattering Diagnostics: Applications
in Practical Combustion Systems ............................ 125
Jun Kojima and Quang-Viet Nguyen
5.1 Introduction .......................................... 125
5.2 Theory of SRS Signal Estimation ....................... 126
5.3 Current Status in Multiscalar Diagnostics ............. 128
5.4 Designing and Building an SRS System .................. 131
5.4.1 Excitation System .............................. 131
5.4.1.1 Laser Sources ......................... 131
5.4.1.2 Pulse Stretching ...................... 132
5.4.1.3 Probe Volume .......................... 134
5.4.2 Spectroscopy System ............................ 136
5.4.2.1 Scattering Collection ................. 136
5.4.2.2 Spectrally Resolved Detection ......... 137
5.4.2.3 Gating ................................ 138
5.4.2.4 Optical Calibration ................... 143
5.4.3 Data Reduction ................................. 143
5.4.3.1 Raman Signal Calibration .............. 143
5.4.3.2 Calibration Burners ................... 145
5.4.3.3 Data Processing ....................... 146
5.4.3.4 Example of Multiscalar Data in
Practical Combustion Systems .......... 146
5.4.4 Flow Controller System Design .................. 148
5.4.4.1 Flow meters ........................... 148
5.4.4.2 Flow Control Software ................. 150
5.5 Outlook ............................................... 150
5.6 Summary ............................................... 151
References ................................................. 152
6 CARS Spectroscopy .......................................... 155
Michele Marrocco
6.1 Introduction .......................................... 155
6.2 Theory: Why is CARS So Sensitive to Temperature? ...... 157
6.3 Theory: Interpretation of CARS Spectra ................ 159
6.4 Molecular Parameters .................................. 164
6.5 Experimental Set-Ups and Phase Matching ............... 167
6.6 Typical Examples of Vibrational CARS Spectra: N2 and
Other Simple Molecules ................................ 172
6.7 General Applications .................................. 175
6.8 Outlook ............................................... 179
6.9 Summary ............................................... 182
References ................................................. 183
7 Laser Doppler Anemometry ................................... 189
Damien Blondel
7.1 Introduction .......................................... 189
7.2 Measurement Principles ................................ 190
7.2.1 Laser Beam ..................................... 190
7.2.2 Doppler Effect ................................. 191
7.2.3 The Fringe Model ............................... 193
7.2.4 Measurement Volume ............................. 194
7.2.5 Backscatter versus Forward-Scatter LDA ......... 195
7.3 System Description .................................... 197
7.3.1 Optics ......................................... 198
7.3.2 Two- and Three-Dimensional LDA for Two- and
Three-Velocity Components ...................... 200
7.3.3 Laser .......................................... 202
7.3.4 Frequency Shift ................................ 202
7.4 Seeding ............................................... 205
7.4.1 Seeding as Flow Field Tracers .................. 206
7.4.2 Light Scattering by Small Particles ............ 207
7.4.3 Type and Size of Seeding Particles ............. 208
7.4.4 Seeding Particles Generator .................... 208
7.5 Signal Processing and Data Analysis ................... 209
7.5.1 LDA Signals .................................... 209
7.5.2 Moments ........................................ 211
7.5.3 Weighting Factor ............................... 212
7.5.4 Time, Length Scale, and Turbulence Velocity
Spectra ........................................ 213
7.6 Applications .......................................... 213
7.6.1 Automotive Engines ............................. 214
7.6.2 Large-Scale Burners ............................ 214
7.6.3 Nonpremixed Turbulent Flame .................... 215
7.6.4 Conditional Velocity in a Swirling Gas-Air
Flame .......................................... 215
7.7 Outlook ............................................... 215
References ............................................ 216
8 Laser-Induced Fluorescence ................................. 219
Alfred Leipertz, Andreas Braeuer, Johannes Kiefer,
Andreas Dreizler, and Christof Heeger
8.1 Introduction .......................................... 219
8.2 Theory ................................................ 220
8.3 LIF Applications ...................................... 223
8.3.1 LIF of Combustion Species ...................... 223
8.3.2 Tracer LIF ..................................... 225
8.3.2.1 Metal Salts ........................... 225
8.3.2.2 Inorganic Molecules ................... 227
8.3.2.3 Organic Molecules ..................... 227
8.3.2.4 Aliphatic Molecules ................... 227
8.3.3 High-Speed LIF ................................. 228
8.3.4 Combined LIF Techniques ........................ 230
8.4 Instrumentation ....................................... 231
8.4.1 Excitation Sources ............................. 231
8.4.2 Detection Strategies ........................... 233
8.5 Outlook and Summary ................................... 235
References ............................................ 236
9 Measurement of Particle Properties: Concentration, Size
Distribution and Density ................................... 243
Matthias Gaderer, Robert Kunde, and Christian Brandt
9.1 Introduction .......................................... 243
9.2 Techniques of Particle Measurement .................... 243
9.2.1 Properties of Particulate Matter ............... 244
9.2.1.1 Equivalent Diameters .................. 244
9.2.1.1.1 Aerodynamic Diameter ....... 244
9.2.1.1.2 Diffusion Equivalent
Diameter ................... 244
9.2.1.1.3 Mobility Diameter .......... 244
9.2.1.1.4 Optic Equivalent
Diameter ................... 245
9.2.1.2 Common Units .......................... 245
9.2.1.3 Difficulties .......................... 245
9.2.1.4 Sampling .............................. 246
9.2.1.4.1 Homogeneity ................ 246
9.2.1.4.2 Isokinetic Sampling ........ 246
9.2.1.4.3 Transport Losses ........... 246
9.2.1.4.4 Humidity ................... 247
9.2.1.4.5 Calibration ................ 247
9.2.1.5 Dilution Techniques ................... 247
9.2.1.5.1 Dilution Tunnel ............ 247
9.2.1.5.2 Ejector Diluter ............ 249
9.2.1.5.3 Porous Tube Diluter ........ 249
9.2.1.5.4 Rotating Disk Diluter ...... 250
9.2.1.5.5 Preventing Nucleation and
Condensation ............... 250
9.2.2 Concentration Measurements ..................... 250
9.2.2.1 Gravimetric Mass Concentration
Measurement ........................... 251
9.2.2.1.1 Filters .................... 252
9.2.2.1.2 Impactor ................... 253
9.2.2.1.3 Conditioning, Handling,
and Interpretation of
Filters .................... 254
9.2.2.2 In-Situ Mass Concentration
Measurements with TEOM ................ 255
9.2.2.3 In-Situ Number Concentration
Measurements .......................... 256
9.2.2.3.1 Condensation Nuclei
(Particle) Counter ......... 256
9.2.2.3.2 Optical or Laser Particle
Counters ................... 257
9.2.3 Size Distribution Measurement .................. 258
9.2.3.1 Gravimetric Size Distribution
Measurement with Cascade Impactors .... 258
9.2.3.2 In Situ Size Distribution
Measurement ........................... 259
9.2.3.2.1 Electrical Low-Pressure
Impactor (ELPI) ............ 259
9.2.3.2.2 Scanning Mobility
Particle Sizer (SMPS) ...... 260
9.2.3.2.3 Aerodynamic Particle
Sizer (APS) ................ 262
9.2.3.2.4 Fast Mobility Particle
Sizer (FMPS) ............... 263
9.2.3.2.5 Diffusion Size Classifier
(DiSC) ..................... 263
9.2.3.2.6 White-Light-Scattering
Analyzers .................. 264
9.2.3.2.7 Aerosol Mass Spectrometry
(AMS) and Aerosol-Time-
of-Flight-Mass
Spectrometry (ATOFMS) ...... 264
9.3 Particles from Biomass Combustion ..................... 265
9.3.1 Particle Formation ............................. 266
9.3.2 Typical Size Distribution on Biomass
Combustion ..................................... 267
9.3.3 Particle Density ............................... 268
9.3.3.1 Definition of Density ................. 269
9.3.3.2 Calculation Theory .................... 269
9.3.3.3 Calculation Experience and Results .... 269
References ................................................. 271
10 Ultrafast Fluorescence Anisotropy for Combustion-
Produced Nanoparticles Analysis ............................ 273
Annalisa Bruno, Corrado de Lisio, and Patrizia Minutolo
10.1 Introduction .......................................... 273
10.2 Time-Resolved Fluorescence Polarization Anisotropy .... 275
10.3 Experimental .......................................... 277
10.3.1 The Ex-Situ Set-Up ............................. 277
10.3.2 The In-Situ Set-Up ............................. 280
10.4 Results ............................................... 282
10.4.1 Ex-Situ ........................................ 282
10.4.2 In-Situ Experimental Results ................... 285
10.5 Conclusions ...................................... 287
References ................................................. 288
11 Formation and Diagnostics of Sprays in Combustion .......... 291
Terrence R. Meyer, Michael Brear, Seong Ho Jin, and
James R. Cord
11.1 Introduction .......................................... 291
11.1.1 Motivation for Spray Combustion Measurements ... 291
11.1.2 Overview of Spray Regimes and Implications
for Measurement Techniques ..................... 293
11.1.3 Scope, Objectives, and Organization ............ 294
11.2 Nonimaging Spray Diagnostics .......................... 294
11.2.1 Mie Scattering for Single Particle Counting .... 295
11.2.2 Phase-Doppler Interferometry for Measuring
Droplet Size and Velocity ...................... 295
11.2.3 Diffraction Measurements for Ensemble-
Averaged Size Statistics ....................... 298
11.2.4 Extinction-Based Tomography for Measuring
Surface Area in a Spray ........................ 298
11.3 Spray Imaging ......................................... 300
11.3.1 Holography ..................................... 301
11.3.2 Planar Mie Scattering .......................... 302
11.3.3 Planar Laser-Induced Fluorescence .............. 303
11.3.4 Laser Sheet Dropsizing with Combined PLIF and
Mie Scattering ................................. 306
11.3.5 Time-Averaged and Instantaneous X-Ray
Imaging ........................................ 310
11.3.6 Conventional Shadowgraphy and Time-Gated
Ballistic Photon Imaging ....................... 311
11.4 Spray Combustion ...................................... 313
11.5 Summary and Outlook ................................... 316
References ................................................. 318
12 Measurements in Large Power Plants ......................... 323
Dagmarjuchelková, Helena Raclavská, and Konstant'm
Raclavský
12.1 Introduction .......................................... 323
12.1.1 Technologies for Combined Combustion ........... 324
12.2 Applications .......................................... 328
12.2.1 Color Measurements of Coal Combustion
Products ....................................... 328
12.2.1.1 The Color of Fly Ash and Possible
Influences on It ...................... 329
12.2.1.2 General Relationships between Color
and Properties of Fly Ashes ........... 333
12.2.1.3 Examples of Color Measurements ........ 335
12.2.1.3.1 Trinec: Fluidized-Bed
Combustion ................. 335
12.2.1.3.2 Detmarovice: Dry-Bottom
Boiler ..................... 336
12.2.1.3.3 Trebovice:
Desulfurization, Slag-Tap
Furnace .................... 338
12.2.1.3.4 Flue Gas Desulfurization
Gypsum ..................... 338
12.2.2 Special Measurement of Alternative Sorbents .... 340
12.2.2.1 Caustification Sludge from Paper
Mill Production ....................... 340
12.2.2.2 Saturation Sludge from Sugar
Industry .............................. 341
12.2.2.3 Limestone VFK 55TM and VFK 80TM ........ 342
12.2.2.4 Utilization of Alternative Sorbent
for Desulfurization ................... 343
12.2.2.4.1 Fixed-Bed Reactor Tests .... 343
12.2.2.4.2 Tests on Models of
Fluidized Furnace with
Circulating Layer CFB ...... 344
12.2.2.4.3 Pilot- Scale 100 kW
Fluidized Bubbling Bed
Tests ...................... 346
12.2.2.4.4 Desulfurization Tests in
a CFBC with Output Power
Rated at 120 MW ............ 346
12.2.2.4.5 Desulfurization Test in
a Powder Boiler with
Output Power Rated at
72.2 MW .................... 348
12.2.3 Special Measurements Inside Boilers ............ 350
12.3 Summary ............................................... 352
References ................................................. 354
13 Carbon Monoxide ............................................ 357
David Belcher
13.1 Introduction and Key Physical Properties .............. 357
1.3.2 Bonding and Structure ........................... 358
13.3 Carbon Monoxide in the Research Laboratory and in
Coordination Chemistry ................................ 360
13.4 Commercial Uses of Carbon Monoxide .................... 362
13.4.1 Gas Production ................................. 362
13.4.2 Petrochemical/Polymer Production ............... 363
13.4.3 The Refinement of Nickel ....................... 366
13.5 Carbon Monoxide in Everyday Life: Its Consequences
and Side Effects, Detection, and Elimination .......... 367
13.5.1 Biological Effects of CO ....................... 367
13.5.2 Vehicular Production of CO ..................... 368
13.5.3 Catalytic Converters ........................... 368
13.5.4 Industrial Applications of CO .................. 370
13.5.5 Smoking and CO ................................. 370
13.5.6 Domestic Appliances and CO Detection ........... 370
13.6 Outlook ............................................... 373
13.7 Summary ............................................... 373
References ................................................. 373
14 CO2 Greenhouse Gas Formation and Capture ................... 375
Hsunling Bat and Mani Karthik
14.1 Introduction .......................................... 375
14.2 The Formation of CO2 .................................. 376
14.2.1 Formation During Complete Combustion ........... 376
14.2.2 Formation During Incomplete Combustion ......... 379
14.2.3 Estimation of CO2 Concentrations Based on
the IPCC Method ................................ 382
14.3 Reduction of CO2 Emissions from Combustion Sources .... 385
14.3.1 Replacement of Hydrocarbon Fuels with
Renewable Energies ............................. 385
14.3.2 The CCS Technologies ........................... 387
14.3.2.1 Post-Combustion Capture ............... 388
14.3.2.2 Pre-Combustion Capture (IPCC-CCS) ..... 390
14.3.2.3 Oxyfuel Combustion Capture ............ 390
14.3.2.4 Transportation and Storage of CO2 ..... 391
14.4 Emerging Technologies for CO2 Reduction ............... 391
14.4.1 Emerging CO2 Capture Technologies .............. 392
14.4.1.1 Absorption of CO2 ..................... 392
14.4.1.2 Adsorption of CO2 ..................... 392
14.4.1.3 Membrane Separation ................... 393
14.4.2 Chemical Looping Combustion .................... 393
14.4.3 Utilization of CO2 ............................. 394
14.5 Outlook ............................................... 397
14.6 Summary ............................................... 397
References ................................................. 397
15 Soot and Soot Diagnostics by Laser-Induced Incandescence ... 403
Alfred Leipertz and Johannes Kiefer
15.1 Introduction .......................................... 403
15.2 Soot Formation ........................................ 404
15.3 Conventional Soot Diagnostics ......................... 407
15.3.1 Probe Techniques ............................... 407
15.3.1.1 Size-Probing Techniques ............... 407
15.3.1.2 Mass Concentration Probing
Techniques ............................ 408
15.3.2 Optical Techniques ............................. 409
15.4 Laser-Induced Incandescence ........................... 410
15.4.1 Fundamental Aspects of LII ..................... 410
15.4.2 Primary Particle Size and Size Distribution .... 412
15.5 LII Applications ...................................... 415
15.5.1 Flame Measurements ............................. 416
15.5.2 Technical Applications ......................... 416
15.6 Summary and Outlook ................................... 418
References ................................................. 419
16 Polycyclic Aromatic Hydrocarbons and Combustion ............ 425
John Fetzer
16.1 Introduction .......................................... 425
16.2 Properties of PAHs .................................... 427
16.3 Analytical Approaches for PAHs in Combustion
Processes and Products ................................ 427
16.4 Formation, Variation, and Occurrence of PAHs .......... 429
16.4.1 Formation ...................................... 429
16.4.2 Variation in PAHs Due to Combustion Source ..... 431
16.4.3 Conventional Combustion of Plant Matter ........ 431
16.4.4 Motor Vehicles ................................. 431
16.4.5 Fuel Oil and Coal Burning ...................... 432
16.5 Controlled Pyrolysis as a Means to Study Combustion ... 433
References ................................................. 437
17 NOx Formation, Control and Reduction Techniques ............ 439
Alexander A. Konnov, M. Tayyebjaved, Håkan Kassman, and
Naseem Irfan
17.1 Introduction .......................................... 439
17.2 Theory Nitrogen Chemistry in Flames ................... 440
17.2.1 Classification of the NOx Formation Routes ..... 440
17.2.1.1 Direct Reactions of N2 with
Radicals .............................. 440
17.2.1.2 Adduct Formation, and Reaction of
the Adduct with Radicals .............. 441
17.2.2 The NNH Route .................................. 441
17.2.3 New Developments in the Prompt-NO Mechanism .... 443
17.2.4 Relative Importance of Different NO-Formation
Routes in Flames ............................... 445
17.2.4.1 Hydrogen Flames ....................... 445
17.2.4.2 Flames of Hydrocarbons ................ 445
17.2.5 Fuel-NO ........................................ 446
17.2.6 NOx Reburning .................................. 446
17.3 Applications in Research: NOx Control and Reduction ... 449
17.3.1 Low-NOx Burners ................................ 449
17.3.2 Flue Gas Recirculation ......................... 449
17.3.3 Over-Fire Air .................................. 449
17.3.4 SNCR ........................................... 450
17.3.4.1 Ammonia-Based SNCR .................... 450
17.3.4.2 Urea-Based SNCR ....................... 450
17.3.4.3 Laboratory-Scale Studies on Urea
DeNOx ................................. 451
17.3.4.4 Ammonium Carbonate-Based SNCR ......... 452
17.3.4.5 Additive-Enhanced SNCR ................ 452
17.3.4.5.1 Ethylene Glycol ............ 453
17.3.4.5.2 Hydrocarbon ................ 453
17.3.4.5.3 Hexamethyltetramine and
Furfural ................... 454
17.3.4.5.4 Oxygenated Additives ....... 454
17.3.4.5.5 Carbon Monoxide ............ 454
17.4 Applications in Industry NOx Reduction Techniques ..... 455
17.4.1 Pilot Scale Studies on Urea DeNOx .............. 455
17.4.2 Full-Scale Studies on Urea DeNOx ............... 455
17.4.3 Ammonium Sulfate-Based SNCR .................... 456
17.5 Summary and Outlook ................................... 456
References ................................................. 457
18 Catalytic Technology for Soot and Caseous Pollution
Control .................................................... 465
Olaf Deutschmann and Athanasios G. Konstandopoulos
18.1 Introduction .......................................... 465
18.1.1 Pollutant Emissions from Stationary Sources .... 465
18.1.2 Pollutant Emissions from Mobile Sources ........ 467
18.1.2.1 Spark-Ignition Internal Combustion
Engines ............................... 468
18.1.2.2 Diesel-Operated Internal Combustion
Engines ............................... 468
18.2 Catalytic Technology for Soot Pollution Control ....... 469
18.2.1 Introduction ................................... 469
18.2.1.1 Diesel Soot ........................... 469
18.2.1.2 Diesel Particulate Filters ............ 471
18.2.2 Soot Loading and Oxidation ..................... 472
18.2.2.1 Soot Accumulation on the Filters ...... 473
18.2.2.2 Soot Oxidation: DPF Regeneration ...... 475
18.2.3 Catalytic Diesel Particulate Filters (CDPFs) ... 476
18.2.3.1 Direct Soot Oxidation Catalysts ....... 476
18.2.3.2 Deposition of Catalysts on Filters .... 478
18.2.3.3 Fuel-Borne Catalysts .................. 478
18.2.4 Assessment of DPF Technologies ................. 478
18.2.4.1 Filtration Efficiency ................. 478
18.2.4.2 Soot Loading .......................... 479
18.2.4.3 Regeneration .......................... 481
18.2.4.3.1 Direct Soot Oxidation ...... 481
18.2.4.3.2 Combination of Direct
Soot Oxidation Catalyst
with Pt .................... 483
18.2.4.3.3 Conversion-Dependent
Phenomena .................. 483
18.2.5 Simulation Approaches .......................... 485
18.2.6 Effect of Ash Accumulation ..................... 488
18.2.6.1 Rapid Ash Aging Method ................ 489
18.2.6.2 Ash Aging Simulation .................. 489
18.3 Catalytic Technology for Gaseous Pollution Control .... 490
18.3.1 Reduction of Gaseous Emissions from Mobile
Sources ........................................ 490
18.3.1.1 The Three-Way Catalyst (TWC) .......... 490
18.3.1.2 Selective Catalytic Reduction of NOx
in Mobile Applications ................ 493
18.3.1.2.1 Introduction ............... 493
18.3.1.2.2 Pre-Catalyst Processes ..... 493
18.3.1.2.3 Catalytic Conversion of
NOx by NH3 ................. 496
18.3.1.2.4 Alternate Catalysts ........ 497
18.3.1.2.5 Alternative Reducing
Agents ..................... 497
18.3.1.3 NOx Storage Catalysts ................. 498
18.3.2 Reduction of Gaseous
Emissions From Stationary
Sources ....................... 500
18.3.2.1 Catalytic Technologies for NOx
Removal ............................... 500
18.3.2.2 Technologies for Removal of Other
Emissions ............................. 503
18.4 Outlook ............................................... 503
References ................................................. 504
19 Corrosion .................................................. 511
Renata Włodarczyk, Rafał Kobyłecki, and Zbigniew Bis
19.1 Introduction .......................................... 511
19.1.1 Corrosion ...................................... 512
19.1.2 Corrosion Processes ............................ 513
19.1.3 Subsurface Corrosion ........................... 514
19.1.4 Corrosion in the Power Industry ................ 516
19.2 Theory ................................................ 516
19.2.1 Effect of Deposition on Corrosion Rate ......... 519
19.2.2 Effect of Fuel Type on the Damage of Boiler
Elements ....................................... 521
19.2.3 Mechanism of Corrosion in the Presence of
Superheated Steam .............................. 524
19.2.4 Sulfate-Sulfide Corrosion Mechanism ............ 526
19.2.5 Chloride Corrosion Mechanism ................... 528
19.3 Applications in Research and Industry ................. 531
19.4 Outlook ............................................... 538
19.5 Summary ............................................... 541
References ................................................. 542
Index ......................................................... 547
|