Foreword ....................................................... V
Preface ...................................................... XXXV
About the Editors .......................................... XXXVII
List of Contributors .......................................... XII
Abbreviations ................................................. XLV
Synopsis Volume 1 .............................................. LI
1 Combustion Fundamentals ...................................... 1
Mohammad Janbozorgi, Kian Eisazadeh Far, and Hameed
Metghalchi
1.1 Introduction ............................................ 1
1.2 Combustion Thermodynamics ............................... 2
1.2.1 Enthalpy of Reaction ............................. 2
1.2.2 Flame Temperature ................................ 3
1.2.3 Chemical Equilibrium ............................. 4
1.3 Chemical Kinetics ....................................... 5
1.3.1 Combustion Chemical Reactions .................... 5
1.3.2 Kinetic Rate Equations ........................... 6
1.3.3 Chemical Time Scales and Nonequilibrium
Effects .......................................... 7
1.3.4 Kinetics Simplification and Reduction ............ 8
1.3.4.1 Rate-Controlled Constrained-
Equilibrium (RCCE) Method .............. 10
1.4 Laminar Premixed Flames ................................ 12
1.4.1 Governing Equations ............................. 14
1.4.2 Experimental Approach ........................... 15
1.4.2.1 Laminar Burning Speed Measurement
Techniques ............................. 15
1.4.2.1.1 Counter Flow Flame
Methods ..................... 15
1.4.2.1.2 Outwardly Propagating
Constant Pressure
Spherical Flame Method ...... 16
1.4.2.1.3 Flat Flame Burner Method .... 17
1.4.2.1.4 Constant Volume Spherical
Vessel Method ............... 17
1.4.2.1.5 Thermodynamic Model ......... 18
1.5 Diffusion Flames ....................................... 20
1.6 Conclusions ............................................ 22
References .................................................. 23
2 Combustion Chemistry ........................................ 27
Ravi Fernandes
2.1 Introduction ........................................... 27
2.2 Temperature Dependence of Rate Coefficients ............ 32
2.3 Pressure Dependence of Rate Coefficients ............... 33
2.4 Experimental Techniques in Elementary Gas-Phase
Kinetics ............................................... 36
2.5 Shock Tubes ............................................ 37
2.6 Detection Techniques in Combustion Kinetics ............ 38
2.7 Low-Temperature Chemistry and Auto-Ignition ............ 39
2.8 Chemistry of Pollutant Formation in Combustion ......... 43
2.9 Formation of Soot from Aliphatic Fuels ................. 44
2.10 Formation of NOx ....................................... 46
2.10.1 Thermal NO Route ................................ 46
2.10.2 Prompt NO ....................................... 46
2.10.3 The N2O Route to NOx ............................. 47
2.10.4 Fuel Nitrogen Route to NO ....................... 47
2.11 Outlook ................................................ 47
2.12 Summary ................................................ 49
References .................................................. 49
3 Combustion Physics .......................................... 53
Alexey Burluka
3.1 Introduction ........................................... 53
3.2 Equilibrium Thermodynamics ............................. 54
3.2.1 Extensive and Intensive Variables ............... 54
3.2.2 The First Law of Thermodynamics ................. 54
3.2.3 Equilibrium ..................................... 55
3.2.4 The Second Law of Thermodynamics ................ 55
3.2.5 Entropy ......................................... 56
3.2.6 Thermochemical Equilibrium and the Second Law ... 56
3.2.7 Equilibrium and the Gibbs Energy ................ 59
3.3 Rate of Combustion ..................................... 60
3.3.1 Conservation Laws ............................... 60
3.3.2 Transport Equation for Concentrations of
Species ......................................... 62
3.3.3 Molecular Transport ............................. 62
3.3.4 Propagation of Premixed Planar Laminar Flame:
The Theory of Zeldovich, Semenov and Frank-
Kamenetsky (ZSFK)
3.3.5 Nonpremixed (Diffusion) Flame ................... 68
3.4 Turbulent Combustion ................................... 71
3.4.1 Averaging in a Turbulent Flow ................... 72
3.4.2 Reference Scalar Field (RSF) Model .............. 75
3.5 Conclusions ............................................ 81
References .................................................. 82
4 Ignition: New Applications to Combustion Studies ............ 85
Valeri I. Golovitchev and Fabian P. Kärrholm
4.1 Introduction ........................................... 85
4.2 The CFD Model Formulations ............................. 86
4.2.1 The Model Formulation: Main Conservation Laws ... 87
4.2.2 Turbulent Combustion Modeling ................... 87
4.2.3 Finite-Rate Formulation for Reaction Model ...... 89
4.2.4 Construction and Validation of Chemical
Mechanisms ...................................... 90
4.3 Ignition CFD Modeling Examples ......................... 95
4.3.1 Simulation of Enhanced Turbulent Deflagration
in the Closed Volume ............................ 95
4.3.2 Modeling of the Flame Lift-Off for Liquid
Sprays in the Constant Volume: Comparative
Study of KIVA-3V and FOAM Codes ................. 97
4.3.3 Modeling of Spark Ignition in SI Gasoline
Engine Boosted by Direct Injection of
Ethanol ........................................ 100
4.3.4 Modeling of Solid Aluminum Ignition in Steam
and Carbon Dioxide ............................. 102
4.4 Conclusions ........................................... 104
References ................................................. 105
5 Heat Transfer in Combustion Systems ........................ 107
Jinliang Xu
5.1 Introduction .......................................... 107
5.2 The Three Basic Heat Transfer Modes ................... 109
5.3 Conduction Heat Transfer .............................. 110
5.3.1 The Basic Concept .............................. 110
5.3.2 Conduction Heat Transfer in Combustion
Systems ........................................ 112
5.3.3 Reviews of Conduction Heat Transfer ............ 113
5.4 Convection Heat Transfer .............................. 114
5.4.1 The Basic Concept .............................. 114
5.4.1.1 Boundary Layer ........................ 115
5.4.1.2 Laminar and Turbulent Flows ........... 115
5.4.2 Forced Convection Heat Transfer ................ 117
5.4.2.1 Fully Developed Flow .................. 117
5.4.2.2 Heat Transfer on Convection Duct
Walls ................................. 117
5.4.2.3 Heat Transfer on Radiative Duct
Walls ................................. 118
5.4.2.4 Thermally Developing Flow ............. 118
5.4.2.5 Simultaneously Developing Flow ........ 118
5.4.3 Natural Convection Heat Transfer ............... 119
5.4.4 Convection Heat Transfer in Combustion
Systems ........................................ 121
5.5 Radiation Heat Transfer ............................... 124
5.5.1 The Basic Concept of Radiation Heat Transfer ... 124
5.5.1.1 Radiation Intensity ................... 124
5.5.1.2 Blackbody Radiation ................... 125
5.5.1.3 Nonblack Surfaces and Materials ....... 126
5.5.1.4 Emissivity ............................ 126
5.5.1.5 Absorptivity and Reflectivity ......... 126
5.5.2 Radiation Heat Transfer in Combustion
Systems ........................................ 126
5.5.2.1 Nonluminous Gaseous Radiation ......... 128
5.5.2.2 Luminous Radiation .................... 129
5.6 Summary ............................................... 130
References ................................................. 131
6 Thermochemistry ............................................ 135
Elke Coos and Alexander Burcat
6.1 Introduction .......................................... 135
6.2 Thermochemical Properties ............................. 135
6.3 First Law of Thermodynamics ........................... 138
6.4 Second Law of Thermodynamics .......................... 138
6.5 Third Law of Thermodynamics ........................... 139
6.6 Consequences of Thermodynamic Laws to Chemical
Kinetics .............................................. 140
6.7 Adiabatic Combustion Temperature ...................... 141
6.8 Measurement of Thermochemical Values .................. 142
6.9 Where to Find Thermochemical Data? .................... 142
6.10 How are the Data Represented? ......................... 144
6.10.1 Extrapolation .................................. 145
6.11 Statistical Thermodynamics: Calculation of
Thermodynamic Functions from Molecule-Specific
Properties (Partition Functions) ...................... 145
6.11.1 Translation .................................... 147
6.11.2 Vibrations ..................................... 147
6.11.3 External Rotation .............................. 148
6.11.4 Internal Rotation .............................. 148
6.11.5 Electronic ..................................... 149
6.12 Applications in Research and Industry ................. 150
6.13 Outlook ............................................... 150
References ................................................. 151
7 Combustion Kinetic Modeling ................................ 153
Muhammed Tayyebjaved, Naseem Irfan, and Muhammad Asim
Ibrahim
7.1 Introduction .......................................... 153
7.2 Combustion Modeling ................................... 154
7.2.1 General Aspects ................................ 154
7.2.2 History and Emergence of Combustion Modeling ... 155
7.2.3 Combustion Model Components .................... 157
7.2.4 Combustion Modeling Procedure .................. 158
7.2.5 Inclusion of Chemical Kinetics ................. 158
7.3 Kinetic Mechanisms .................................... 159
7.3.1 Chemical Kinetic Mechanisms Studies ............ 159
7.3.2 Mechanism Development and Reduction ............ 161
7.3.2.1 Skeletal Mechanism Reduction .......... 162
7.3.2.2 Time-Scale Mechanism Reduction ........ 162
7.3.2.3 Diffusion Coefficient Reduction ....... 163
7.3.2.4 Method of Computational Singular
Perturbation .......................... 163
7.4 Coupling of Chemical Kinetics and Fluid Dynamics ...... 164
7.4.1 Detailed Chemical Kinetics with Ideal Flow
Fields ......................................... 164
7.4.2 Reduced Chemical Kinetic Mechanisms with
Actual Flow Fields ............................. 165
7.5 Outlook and Summary ................................... 168
References ................................................. 169
8 Modeling of Turbulent Combustion ........................... 175
Bart Merci, Epaminondas Mastorakos, and Arnaud Мurа
8.1 Introduction .......................................... 175
8.2 Turbulence: Physics and Modeling ...................... 175
8.2.1 Turbulent Scales ............................... 176
8.2.2 Direct Numerical Simulation .................... 178
8.2.3 Turbulence Modeling ............................ 179
8.2.3.1 Turbulence Closure Problem ............ 179
8.2.3.2 RANS Turbulence Models ................ 180
8.2.3.3 Large-Eddy Simulation ................. 182
8.3 Turbulent Premixed Combustion ......................... 183
8.3.1 Turbulent Premixed Flame Structure ............. 183
8.3.2 Turbulent Premixed Combustion Regime Diagram ... 184
8.3.3 Progress Variable Formalism .................... 185
8.3.4 Fast Chemistry Models .......................... 186
8.3.4.1 The BML Model ......................... 186
8.3.4.2 G-Equation Model ...................... 188
8.3.5 Finite-Rate Chemistry .......................... 188
8.4 Turbulent Nonpremixed Combustion ...................... 189
8.4.1 Eddy Break-Up and Eddy Dissipation Concept ..... 189
8.4.2 Mixture Fraction Concept ....................... 189
8.4.3 Turbulent Nonpremixed Combustion Diagram ....... 190
8.4.4 Turbulence Closure: PDF ........................ 191
8.4.5 Fast Chemistry Models .......................... 192
8.4.5.1 Flame Sheet Model ..................... 192
8.4.5.2 Chemical Equilibrium .................. 192
8.4.5.3 Laminar Flamelet Concept .............. 193
8.4.6 Finite-Rate Chemistry .......................... 193
8.4.6.1 Eddy Dissipation Concept .............. 193
8.4.6.2 Transported PDF ....................... 194
8.4.6.3 CMC ................................... 194
8.5 Partially Premixed Combustion ......................... 195
8.5.1 Background ..................................... 195
8.5.2 Classification ................................. 196
8.5.3 Modeling ....................................... 197
8.6 Outlook ............................................... 198
8.7 Summary ............................................... 198
References ................................................. 199
9 Modeling and Simulation of Droplet and Spray Combustion .... 205
Eva Cutheil
9.1 Introduction .......................................... 205
9.2 Droplet Evaporation and Combustion .................... 206
9.3 Spray Evaporation and Combustion ...................... 208
9.3.1 Euler-Euler Models ............................. 209
9.3.2 Euler-Lagrange Models .......................... 210
9.3.3 Turbulence Modeling ............................ 213
9.3.4 Chemical Reactions in Spray Flows .............. 219
9.4 Summary and Outlook ................................... 224
References ................................................. 224
10 Conventional and Innovative Spray Generation for
Combustion Applications .................................... 229
Raffaele Ragucci and Brian Milton
10.1 Introduction .......................................... 229
10.2 Basic Concepts of Atomization ......................... 231
10.3 Liquid Fuel Atomization Applications .................. 235
10.3.1 Power Generation Systems ....................... 235
10.3.1.1 Atomization of Conventional Liquid
Fuels in Steady Plants ................ 236
10.3.1.2 Atomizers for Terrestrial Gas
Turbines .............................. 237
10.3.2 Propulsion Systems ............................. 237
10.3.2.1 Automotive Spark-Ignition (SI)
Engines ............................... 238
10.3.2.2 Automotive (Car and Truck)
Compression-Ignition (CI) Engines ..... 239
10.3.2.3 Aircraft Gas Turbines ................. 240
10.4 Outlook on Innovative Atomization Techniques .......... 240
10.4.1 Atomizing/Premixing Systems Based on Cross-
Flow Injection ................................. 241
10.4.2 Supersonic Atomization ......................... 244
10.4.2.1 Towards Higher Pressures and
Supersonic Injection Velocities ....... 245
10.4.2.1.1 Supersonic Liquid Jets ..... 247
10.5 Summary ............................................... 249
References ................................................. 249
11 Light Emission from Flames ................................. 251
Stephen A. Ciatti
11.1 Introduction .......................................... 251
11.2 Theory ................................................ 252
11.2.1 Soot Incandescence or Soot Radiation ........... 252
11.2.2 Electron-Shift Emission of Photons ............. 255
11.3 Applications in Research .............................. 258
11.4 Outlook ............................................... 262
11.5 Summary ............................................... 263
References ................................................. 263
12 Cool Flames ................................................ 265
Dionysios I. Kolaitis and Maria A. Founti
12.1 Introduction .......................................... 265
12.2 Theory ................................................ 265
12.2.1 Phenomenology .................................. 265
12.2.2 Negative Temperature Coefficient (NTC) ......... 268
12.2.3 Stabilized Cool Flames ......................... 269
12.2.4 Chemical Kinetics .............................. 272
12.3 Applications .......................................... 274
12.3.1 Liquid Fuel Evaporation for Premixed
Combustion ..................................... 275
12.3.2 Liquid Fuel Reforming for Fuel Cell
Applications ................................... 276
12.3.3 Internal Combustion Engines .................... 278
12.3.3.1 Knocking .............................. 278
12.3.3.2 Low-Temperature Combustion and HCCI
Engines ............................... 278
12.3.3.3 Lean Premixed Prevaporized
Combustion in Gas Turbines ............ 279
12.3.4 Industrial Safety .............................. 279
12.4 Numerical Modeling of Stabilized Cool Flame
Reactors .............................................. 280
12.4.1 One-Dimensional Chemical Kinetics Simulation
of a Linear Flow SCF Reactor ................... 281
12.4.2 Two-Dimensional Two-Phase CFD Simulation of
a Linear Flow SCF Reactor ...................... 283
12.4.3 Three-Dimensional Two-Phase CFD Simulation
of a Recirculating Flow SCF Reactor ............ 287
12.5 Outlook ............................................... 289
12.6 Summary ............................................... 290
References ................................................. 290
13 Industrial Steam Boilers ................................... 295
Jorge Barroso, Félix Barreras, Javier Ballester, and
Norberto Fueyo
13.1 Introduction: Principles and Technology ............... 295
13.1.1 Boiler Characteristics and Classification ...... 296
13.1.2 Combustion Systems ............................. 298
13.1.2.1 Bed Combustion Systems ................ 298
13.1.2.2 Suspension Combustion Systems ......... 299
13.2 Boiler Design and Diagnostics ......................... 301
13.2.1 Conventional Boiler Design ..................... 301
13.2.2 CFD Methods for Boiler Design .................. 306
13.2.2.1 The Furnace ........................... 307
13.2.2.2 Furnace Submodels ..................... 308
13.2.2.3 Modeling of Other Furnace Types ....... 309
13.2.2.4 The Convective Zone ................... 310
13.2.2.5 Advanced In-Furnace Submodels ......... 311
13.2.3 Combustion Diagnostics and Control ............. 312
13.2.3.1 Flue Gas Analysis ..................... 313
13.2.3.2 In-Furnace Diagnostics ................ 314
13.2.3.3 State Identification and Control of
Combustion Systems .................... 316
13.2.4 Ash Deposition and Corrosion ................... 317
13.3 Technology Outlook .................................... 320
13.3.1 Supercritical and Ultra-Supercritical
Boilers ........................................ 320
13.3.2 Low-NOx Combustion Systems ..................... 321
13.3.3 Oxycombustion .................................. 322
References ................................................. 323
14 Fuel Cells ................................................. 333
Xiao-Zi Yuan and Haijiang Wang
14.1 Introduction .......................................... 333
14.2 Theory ................................................ 334
14.2.1 Principles ..................................... 334
14.2.2 Thermodynamics ................................. 336
14.2.2.1 Heat of Reaction ...................... 336
14.2.2.2 Energy Efficiency ..................... 336
14.2.3 Reaction Kinetics .............................. 338
14.2.3.1 The Butler-Volmer Equation ............ 338
14.2.3.2 Polarization Curve .................... 340
14.2.3.3 Voltage Losses ........................ 341
14.3 Types of Fuel Cell .................................... 341
14.3.1 PEMFCs ......................................... 342
14.3.1.1 H2/Air PEMFCs ......................... 343
14.3.1.2 Direct Liquid Fuel Cells (DLFCs) ...... 344
14.3.2 Alkaline Fuel Cell (AFC) ....................... 345
14.3.3 Phosphoric Acid Fuel Cell (PAFC) ............... 346
14.3.4 Molten Carbonate Fuel Cell (MCFC) .............. 347
14.3.5 Solid Oxide Fuel Cells (SOFCs) ................. 348
14.4 Fuel Cell Applications ................................ 350
14.5 Outlook ............................................... 352
14.6 Summary ............................................... 353
References ................................................. 354
15 Toxicology of Combustion Products .......................... 357
Tarun Gupta and Avinash Kumar Aganval
15.1 Introduction .......................................... 357
15.2 Diesel Engine Emissions ............................... 360
15.2.1 Chemical Composition ........................... 360
15.2.2 Sampling ....................................... 362
15.2.3 Health Effects ................................. 364
15.3 Health Effects Associated with Other Combustion
Sources ............................................... 366
15.4 Outlook ............................................... 369
15.5 Summary ............................................... 371
References ................................................. 371
16 Explosion Safety ........................................... 377
Gordon E. Andrews and Herodotos N. Phyiaktou
16.1 Introduction .......................................... 377
16.2 Explosion Stoichiometry ............................... 379
16.3 Lean Flammability Limits .............................. 384
16.4 Stoichiometry and Lean Flammability for Metal Dust
Explosions ............................................ 388
16.5 The influence of Temperature, Pressure, and Inerts
on Lean Flammability Limits ........................... 390
16.6 Ventilation Requirements for Explosion Safety ......... 392
16.7 Applications of Lean Limit Stoichiometry to Two
Explosion Risk Situations ............................. 394
16.8 Liquid Fuel Tank Vapor Space Explosions and the
Importance of the Flash Point ......................... 395
16.9 Burning Velocity, Flame Speeds, Explosion-Induced
Wind, and Closed-Vessel Pressure Rises ................ 398
16.10 An Overview of Explosion-Protection Measures ......... 399
16.11 Vent Design for Explosion Protection for Compact
Vessels ............................................... 400
16.12 Vent Design for Long Vessels with L/D > 2 ............ 407
16.13 Conclusions .......................................... 409
References ................................................. 411
17 Flame Retardants: Chemistry, Applications, and
Environmental Impacts ...................................... 415
Adrian Beard and David Angeler
17.1 Introduction .......................................... 415
17.2 Flame Retardant Groups by Active Element and
Mechanism ............................................. 416
17.2.1 Flame-Retardant Mechanisms ..................... 416
17.2.2 Bromine and Chlorine ........................... 417
17.2.3 Phosphorus ..................................... 420
17.2.4 Nitrogen ....................................... 421
17.2.5 Mineral Flame Retardants ....................... 422
17.2.6 Nanomaterials: Layered Clay Minerals and
Carbon Nanotubes ............................... 422
17.2.7 Other Flame Retardants and Synergists:
Borates, Zinc Compounds, and Expandable
Graphite ....................................... 423
17.3 Safety Regulations and Fire Test Standards ............ 423
17.4 Applications in Industry .............................. 424
17.4.1 Electric and Electronic Equipment .............. 425
17.4.2 Construction ................................... 425
17.4.3 Transport: Aeroplanes, Ships, Trains, and
Road Vehicles .................................. 426
174.4 Textiles ........................................ 428
17.5 Environmental and Human Health Concerns ............... 428
17.5.1 Brominated Flame Retardants .................... 429
17.5.2 Wildland Fires and Retardants .................. 431
17.6 Outlook ............................................... 436
17.7 Summary ............................................... 436
References ................................................. 437
18 Loss Prevention and Safety Promotion in Industry ........... 441
Ales Bernatik
18.1 The Problems of Major Accident Prevention:
An Introduction ....................................... 441
18.1.1 Accidents in the Past, and Legislation ......... 441
18.2 Major Accident Risk Assessment ........................ 444
18.2.1 General Principle of Major Accident Risk
Assessment ..................................... 444
18.2.2 A Brief Overview of Partial Methods of Risk
Analysis ....................................... 445
18.2.2.1 Selection Method ...................... 447
18.2.2.2 Dow's Fire and Explosion Index ........ 448
18.2.2.3 Dow's Chemical Exposure Index ......... 448
18.2.2.4 Hazard and Operability Analysis
(HAZOP) ............................... 449
18.2.2.5 Fault Tree Analysis (FTA) ............. 449
18.2.2.6 Event Tree Analysis (ETA) ............. 449
18.2.3 Scenario Probability Assessment ................ 450
18.2.3.1 Direct Ignition ....................... 450
18.2.4 Scenario Consequence Assessment ................ 450
18.2.5 Risk Acceptability ............................. 451
18.2.5.1 Probit Function ....................... 451
18.2.5.2 Calculation and Result Presentation ... 453
18.3 Major Accident Risk Management ........................ 455
18.3.1 Possibilities of Reducing Major Accident
Risks .......................................... 456
18.4 Outlook ............................................... 457
18.5 Summary ............................................... 457
References ................................................. 458
19 Fire Safety ................................................ 459
Michael A. Delichatsios
19.1 Introduction .......................................... 459
19.2 Classification of Data ................................ 460
19.3 List of Data .......................................... 461
19.3.1 Part A: Specification of the Designed Object ... 461
19.3.2 Part B: Fire Physics and Chemistry ............. 463
19.3.2.1 Fire Spread and Fire Growth, Heat
Fluxes, and Products of Combustion .... 464
19.3.2.2 Dispersion of Fire Products ........... 464
19.3.3 Part C: Human Behavior/Human Factors ........... 464
19.3.3.1 Occupant Response ..................... 465
19.3.3.2 Designed Object Preparedness for
Fire .................................. 465
19.3.4 Part D: Risk Assessment ........................ 470
19.3.4.1 Hazard Identification ................. 470
19.3.4.2 Consequence Severity and Likelihood ... 470
19.3.4.3 Control and Mitigation ................ 472
19.3.4.4 Acceptance Criteria ................... 472
19.4 Risk Analysis and Fire Protection Engineering Based
on Software Agents .................................... 472
19.5 Conclusions ........................................... 474
References ................................................. 475
20 Smoke Spread in Buildings .................................. 477
Lizhong Yang and Laixi Wu
20.1 Introduction .......................................... 477
20.2 Experimental Facilities ............................... 479
20.3 The Spatial Distribution Rule of Toxic Gases in the
Long Passage .......................................... 480
20.3.1 Vertical Distribution Rule of Toxic Gases ...... 480
20.3.2 Horizontal Distribution Rule of Toxic Gases .... 481
20.4 The Spatial Distribution Rule of Toxic in the Remote
Room .................................................. 484
20.4.1 Influence of Opening С ......................... 484
20.4.2 Influence of Opening D ......................... 485
20.4.3 Influence of Opening E ......................... 488
20.5 Simulation of Smoke Movement to the Non-Firesouce-
Field ................................................. 488
20.5.1 Structure of Building .......................... 489
20.5.2 Numerical Simulation ........................... 489
20.5.2.1 Software Package ...................... 489
20.5.2.2 Simulation Arrangement ................ 491
20.5.3 Result ......................................... 491
20.6 Risk Analysis ......................................... 494
20.6.1 Index of Toxicity .............................. 494
20.6.2 The Application of It in the Risk Analysis of
Fire ........................................... 495
20.7 Conclusions ........................................... 497
References ................................................. 498
Index ......................................................... 501
|