Neisendorfer J. Algebraic methods in unstable homotopy theory (Cambridge; New York, 2010). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаNeisendorfer J. Algebraic methods in unstable homotopy theory. - Cambridge; New York: Cambridge University Press, 2010. - xix, 554 p.: ill. - (New mathematical monographs; 12). - Bibliogr.: p.545-549. - Ind.: p.550-554. - ISBN 978-0-52176037-9
 

Место хранения: 013 | Институт математики СО РАН | Новосибирск | Библиотека

Оглавление / Contents
 
Preface	page ................................................. xiii
Acknowledgments .............................................. xix
Introduction to unstable homotopy theory ....................... 1

1  Homotopy groups with coefficients .......................... 11
   1.1   В asic definitions ................................... 12
   1.2   Long exact sequences of pairs and fibrations ......... 15
   1.3   Universal coefficient exact sequences ................ 16
   1.4   Functor properties ................................... 18
   1.5   The Bockstein long exact sequence .................... 20
   1.6   Nonfinitely generated coefficient groups ............. 23
   1.7   The mod k Hurewicz homomorphism ...................... 25
   1.8   The mod k Hurewicz isomorphism theorem ............... 27
   1.9   The mod k Hurewicz isomorphism theorem for pairs ..... 32
   1.10  The third homotopy group with odd coefficients is
         abelian .............................................. 34
2  A general theory of localization ........................... 35
   2.1   Dror Farjoun-Bousfield localization .................. 37
   2.2   Localization of abelian groups ....................... 46
   2.3   Classical localization of spaces: inverting primes ... 47
   2.4   Limits and derived functors .......................... 53
   2.5   Hom and Ext .......................................... 55
   2.6   p-completion of abelian groups ....................... 58
   2.7   p-completion of simply connected spaces .............. 63
   2.8   Completion implies the mod k Hurewicz isomorphism .... 68
   2.9   Fracture lemmas ...................................... 70
   2.10  Killing Eilenberg-MacLane spaces: Miller's theorem ... 74
   2.11  Zabrodsky mixing: the Hilton-Roitberg examples ....... 83
   2.12  Loop structures on p-completions of spheres .......... 88
   2.13  Serre's C-theory and finite generation ............... 91
3  Fibre extensions of squares and the Peterson-Stein
   formula .................................................... 94
   3.1   Homotopy theoretic fibres ............................ 95
   3.2   Fibre extensions of squares .......................... 96
   3.3   The Peterson-Stein formula ........................... 99
   3.4   Totally fibred cubes ................................ 101
   3.5   Spaces of the homotopy type of a CW complex ......... 104
4  Hilton-Hopf invariants and the EHP sequence ............... 107
   4.1   The Bott-Samelson theorem ........................... 108
   4.2   The James construction .............................. 111
   4.3   The Hilton-Milnor theorem ........................... 113
   4.4   The James fibrations and the EHP sequence ........... 118
   4.5   James's 2-primarу exponent theorem .................. 121
   4.6   The 3-connected cover of S3 and its loop space ...... 124
   4.7   The first odd primary homotopy class ................ 126
   4.8   Elements of order 4 ................................. 128
   4.9   Computations with the EHP sequence .................. 132
5  James-Hopf invariants and Toda-Hopf invariants ............ 135
   5.1   Divided power al gebras ............................. 136
   5.2   James-Hopf invariants ............................... 141
   5.3   p-th Hilton-Hopf invariants ......................... 145
   5.4   Loops on filtrations of the James construction ...... 148
   5.5   Toda-Hopf invariants ................................ 151
   5.6   Toda's odd primary exponent theorem ................. 155
6  Samelson products ......................................... 158
   6.1   The fibre of the pinch map and self maps of Moore
         spaces .............................................. 160
   6.2   Existence of the smash decomposition ................ 166
   6.3   Samelson and Whitehead products ..................... 167
   6.4   Uniqueness of the smash decomposition ............... 171
   6.5   Lie identities in groups ............................ 177
   6.6   External Samelson products .......................... 179
   6.7   Internal Samelson products .......................... 186
   6.8   Group models for loop spaces ........................ 190
   6.9   Relative Samelson products .......................... 198
   6.10  Universal models for relative Samelson products ..... 202
   6.11  Samelson products over the loops on an H-space ...... 210
7  Bockstein spectral sequences .............................. 221
   7.1   Exact couples ....................................... 222
   7.2   Mod p homotopy Bockstein spectral sequences ......... 225
   7.3   Reduction maps and extensions ....................... 229
   7.4   Convergence ......................................... 230
   7.5   Samelson products in the Bockstein spectral
         sequence ............................................ 232
   7.6   Mod p homology Bockstein spectral sequences ......... 235
   7.7   Mod p cohomology Bockstein spectral sequences ....... 238
   7.8   Torsion in H-spaces ................................. 241
8  Lie algebras and universal enveloping algebras ............ 251
   8.1   Universal enveloping algebras of graded Lie
         algebras ............................................ 252
   8.2   The graded Poincare-Birkhoff-Witt theorem ........... 257
   8.3   Consequences of the graded Poincare-Birkhoff-Witt
         theorem ............................................. 264
   8.4   Nakayama's lemma .................................... 267
   8.5   Free graded Lie algebras ............................ 270
   8.6   The change of rings isomorphism ..................... 274
   8.7   Subalgebras of free graded Lie algebras ............. 278
9  Applications of graded Lie algebras ....................... 283
   9.1   Serre's product decomposition ....................... 284
   9.2   Loops of odd primary even dimensional Moore
         spaces .............................................. 286
   9.3   The Hilton-Milnor theorem ........................... 290
   9.4   Elements of mod p Hopf invariant one ................ 294
   9.5   Cycles in differential graded Lie algebras .......... 299
   9.6   Higher order torsion in odd primary Moore spaces .... 303
   9.7   The homology of acyclic free differential graded
         Lie algebras ........................................ 306
10 Differential homological algebra .......................... 313
   10.1  Augmented algebras and supplemented coalgebras ...... 315
   10.2  Universal algebras and coalgebras ................... 323
   10.3  Bar constructions and cobar constructions ........... 326
   10.4  Twisted tensor products ............................. 329
   10.5  Universal twisting morphisms ........................ 332
   10.6  Acyclic twisted tensor products ..................... 335
   10.7  Modules over augmented algebras ..................... 337
   10.8  Tensor products and derived functors ................ 340
   10.9  Comodules over supplemented coalgebras .............. 345
   10.10 Injective classes ................................... 349
   10.11 Cotensor products and derived functors .............. 356
   10.12 Injective resolutions, total complexes, and
         differential Cotor .................................. 363
   10.13 Cartan's constructions .............................. 369
   10.14 Homological invariance of differential Cotor ........ 374
   10.15 Alexander-Whitney and Eilenberg-Zilber maps ......... 378
   10.16 Eilenberg-Moore models .............................. 383
   10.17 The Eilenberg-Moore spectral sequence ............... 387
   10.18 The Eilenberg-Zilber theorem and the Kunneth
         formula ............................................. 390
   10.19 Coalgebra structures on differential Cotor .......... 393
   10.20 Homotopy pullbacks and differential Cotor of
         several variables ................................... 395
   10.21 Eilenberg-Moore models of several variables ......... 400
   10.22 Algebra structures and loop multiplication .......... 403
   10.23 Commutative multiplications and coalgebra
         structures .......................................... 407
   10.24 Fibrations which are totally nonhomologous to
         zero ................................................ 409
   10.25 Suspension in the Eilenberg-Moore models ............ 413
   10.26 The Bott-Samelson theorem and double loops of
         spheres ............................................. 416
   10.27 Special unitary groups and their loop spaces ........ 425
   10.28 Special orthogonal groups ........................... 430
11 Odd primary exponent theorems ............................. 437
   11.1  Homotopies, NDR pairs, and H-spaces ................. 438
   11.2  Spheres, double suspensions, and power maps ......... 444
   11.3  The fibre of the pinch map .......................... 447
   11.4  The homology exponent of the loop space ............. 453
   11.5  The Bockstein spectral sequence of the loop space ... 456
   11.6  The decomposition of the homology of the loop
         space ............................................... 460
   11.7  The weak product decomposition of the loop space .... 465
   11.8  The odd primary exponent theorem for spheres ........ 473
   11.9  H-space exponents ................................... 478
   11.10 Homotopy exponents of odd primary Moore spaces ...... 480
   11.11 Nonexistence of H-space exponents ................... 485
12 Differential homological algebra of classifying spaces .... 489
   12.1  Projective classes .................................. 490
   12.2  Differential graded Hopf algebras ................... 494
   12.3  Differential Tor .................................... 495
   12.4  Classifying spaces .................................. 502
   12.5  The Serre filtration ................................ 504
   12.6  Eilenberg-Moore models for Borel constructions ...... 505
   12.7  Differential Tor of several variables ............... 508
   12.8  Eilenberg-Moore models for several variables ........ 512
   12.9  Coproducts in differential Tor ...................... 515
   12.10 Kiinneth theorem .................................... 517
   12.11 Products in differential Tor ........................ 518
   12.12 Coproducts and the geometric diagonal ............... 520
   12.13 Suspension and transgression ........................ 525
   12.14 Eilenberg-Moore spectral sequence ................... 528
   12.15 Euler class of a vector bundle ...................... 530
   12.16 Grassmann models for classifying spaces ............. 534
   12.17 Homology and cohomology of classifying spaces ....... 537
   12.18 Axioms for Stiefel-Whitney and Chern classes ........ 539
   12.19 Applications of Stiefel-Whitney classes ............. 542

Bibliography ................................................. 545
Index ........................................................ 550


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:22:34 2019. Размер: 14,909 bytes.
Посещение N 1729 c 13.09.2011