Meyyappan M. Inorganic nanowires: applications, properties, and characterization (Boca Raton, 2010). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаMeyyappan M. Inorganic nanowires: applications, properties, and characterization / M.Meyyappan, M.Sunkara. - Boca Raton: CRC; London: Taylor & Francis, 2010. - xvi, 433 p.: ill. - (Nanomaterials and their applications). - Incl. bibl. ref. - Ind.: p.421-433. - ISBN 978-1-4200-6782-8
 

Оглавление / Contents
 
Preface ........................................................ xi
Authors ........................................................ xv

1  Introduction ................................................. 1
   References ................................................... 5
2  Historical Perspective ....................................... 7
   References .................................................. 15
3  Growth Techniques ........................................... 17
   3.1  Introduction ........................................... 17
   3.2  Liquid-Phase Techniques ................................ 17
        3.2.1  Template-Based Methods .......................... 18
               3.2.1.1  Template Preparation ................... 18
               3.2.1.2  Deposition Methods ..................... 23
        3.2.2  Template-Free Methods ........................... 32
               3.2.2.1  Hydrothermal Method .................... 32
               3.2.2.2  Sonochemical Method .................... 34
               3.2.2.3  Surfactant-Assisted Growth: Soft
                        Directing Agents ....................... 35
               3.2.2.4  Catalyst-Assisted Solution-Based
                        Approaches ............................. 36
   3.3  Vapor-Phase Techniques ................................. 37
        3.3.1  One-Dimensional Growth Concepts ................. 38
               3.3.1.1  Vapor-Liquid-Solid Schemes Using
                        Foreign Metal Clusters ................. 38
               3.3.1.2  Vapor-Liquid-Solid Schemes Using
                        Low-Melting Metal Clusters ............. 39
               3.3.1.3  Vapor-Liquid-Solid Schemes Using
                        Large Size, Molten Metal Clusters ...... 40
               3.3.1.4  Vapor-Solid-Solid Scheme ............... 40
               3.3.1.5  Oxygen-Assisted Growth (OAG) Scheme .... 40
        3.3.2  Source Generation and Reactors for Vapor-Phase
               Synthesis of Nanowires .......................... 40
               3.3.2.1  Thermal Evaporation .................... 41
               3.3.2.2  Laser Ablation ......................... 42
               3.3.2.3  Metal Organic Chemical Vapor
                        Deposition ............................. 44
               3.3.2.4  Chemical and Molecular Beam Epitaxy .... 47
               3.3.2.5  Plasma Arc Discharge-Based
                        Techniques ............................. 49
   3.4  Bulk Production Methods ................................ 50
        3.4.1  Hot Filament CVD Method ......................... 50
        3.4.2  Supercritical Fluid Approach .................... 52
        3.4.3  Direct Oxidation Schemes Using Plasma ........... 52
        3.4.4  Direct Gas-Phase Reactions Using Plasma
               Discharges ...................................... 53
   3.5  Future Developments .................................... 55
   References .................................................. 57
4  Thermodynamic and Kinetic Aspects of Nanowire Growth ........ 61
   4.1  Introduction ........................................... 61
   4.2  Thermodynamic Considerations for Vapor-Liquid-Solid
        Growth ................................................. 63
        4.2.1  Thermodynamic Considerations of Nucleation
               from Molten Metal Droplets ...................... 63
               4.2.1.1  Gibbs-Thompson Relationship ............ 63
               4.2.1.2  Nucleation from Molten Metal Alloy
                        Droplet ................................ 65
               4.2.1.3  Nucleation from Various Molten Metal
                        Droplets ............................... 66
               4.2.1.4  Thermodynamic Estimation of
                        Supersaturation for Spontaneity of
                        Nucleation ............................. 70
               4.2.1.5  Rational Choice of Metal for Tip-Led
                        Growth of Nanowires (Avoiding
                        Nucleation) ............................ 73
               4.2.1.6  Experimental Conditions for Promoting
                        Tip-Led Growth Using Any Molten
                        Metal .................................. 76
        4.2.2  Interfacial Energy and Tip-Led Growth ........... 77
               4.2.2.1  Role of Interfacial Energy in the
                        Nanowire Growth Stability .............. 77
               4.2.2.2  Role of Interfacial Energy in
                        Nanowire Faceting ...................... 81
               4.2.2.3  Role of Interfacial Energy on the
                        Nanowire Growth Direction .............. 85
   4.3  Kinetic Considerations of Nanowire Growth under VLS
        Growth ................................................. 87
        4.3.1  Kinetics of Vapor-Liquid-Solid Equilibrium ...... 87
        4.3.2  Role of Direct Impingement in Growth Kinetics ... 89
        4.3.3  Role of Surface Diffusion in Growth Kinetics .... 91
        4.3.4  Direct Impingement and Diffusion ................ 94
        4.3.5  Role of Surface Diffusion on the Metal
               Droplet ......................................... 95
        4.3.6  Role of Interwire Spacing ....................... 97
   References .................................................. 98
5  Modeling of Nanowire Growth ................................ 101
   5.1  Introduction .......................................... 101
   5.2  Energetics of Stable Surface Faceting: Silicon
        Nanowire Example ...................................... 102
   5.3  Simulation of Individual Nanowire Growth .............. 104
        5.3.1  Simulation Methodology ......................... 105
        5.3.2  Kinetic Monte Carlo Simulation Results ......... 108
        5.3.3  Experimental Results on Growth Direction
               and Surface Faceting ........................... 112
   5.4  Modeling of Multiple Nucleation and Growth of
        One-Dimensional Structures ............................ 115
   5.5  Modeling Nanowire Array Growth ........................ 117
   References ................................................. 121
6  Semiconducting Nanowires ................................... 123
   6.1  Introduction .......................................... 123
   6.2  Silicon Nanowires ..................................... 123
        6.2.1  SiCl4/H2 System ................................. 124
        6.2.2  Silane Feedstock in VLS Growth ................. 134
        6.2.3  Other Sources .................................. 135
        6.2.4  Oxide-Assisted Growth .......................... 136
        6.2.5  Template-Assisted Synthesis .................... 137
        6.2.6  Plasma Enhancement ............................. 138
        6.2.7  Doping of SiNWs ................................ 139
        6.2.8  Properties of SiNWs ............................ 140
   6.3  Germanium Nanowires ................................... 142
        6.3.1  Synthesis Using Germanium Powder ............... 143
        6.3.2  Germane and Related Sources .................... 146
   6.4  Catalyst Choice ....................................... 147
   6.5  III-V Nanowires ....................................... 148
        6.5.1  GaAs Nanowires ................................. 149
        6.5.2  InAs Nanowires ................................. 152
        6.5.3  InP Nanowires .................................. 152
        6.5.4  GaP Nanowires .................................. 154
   References ................................................. 155
7  Phase Change Materials ..................................... 161
   7.1  Introduction .......................................... 161
   7.2  Phase Change Nanowire Growth .......................... 162
   7.3  Properties Relevant to PRAM ........................... 167
   References ................................................. 169
8  Metallic Nanowires ......................................... 171
   8.1  Bismuth Nanowires ..................................... 171
   8.2  Silver Nanowires ...................................... 173
   8.3  Copper Nanowires ...................................... 174
   8.4  Nickel Nanowires ...................................... 176
   8.5  Zinc Nanowires ........................................ 178
   References ................................................. 180
9  Oxide Nanowires ............................................ 183
   9.1  Introduction .......................................... 183
   9.2  Synthesis Methodologies ............................... 184
        9.2.1  Catalyst-Assisted Synthesis .................... 184
        9.2.2  Direct Oxidation Schemes Using Low-Melting
               Metals ......................................... 190
               9.2.2.1  Direct Oxidation of Molten Metal
                        Clusters .............................. 190
               9.2.2.2  Direct Chemical/Reactive Vapor
                        Deposition of Low-Melting Metal
                        Oxides ................................ 193
        9.2.3  Chemical Vapor Transport or Deposition of
               High-Melting Metal Oxides ...................... 196
        9.2.4  Plasma and Thermal Oxidation of Foils .......... 202
   9.3  Directed Growth and Morphological Control ............. 206
        9.3.1  Branched Nanowire Structures ................... 206
        9.3.2  Networking of Nanowires ........................ 208
        9.3.3  Nanobelts ...................................... 209
        9.3.4  Tubular Nanostructures ......................... 212
               9.3.4.1  High-Melting Metal Oxides ............. 212
               9.3.4.2  Low-Melting Metal Oxides .............. 213
   9.4  Oxygen Vacancies, Doping, and Phase Transformation .... 214
        9.4.1  Oxygen Vacancies ............................... 214
        9.4.2  Doping and Alloying ............................ 216
        9.4.3  Phase Transformation of Metal Oxide
               Nanowires ...................................... 217
   References ................................................. 220
10 Nitride Nanowires .......................................... 225
   10.1 Introduction .......................................... 225
   10.2 Synthesis of Group III-Nitride Nanowires .............. 225
        10.2.1 Catalyst-Assisted Synthesis .................... 226
               10.2.1.1 Choice of Precursors .................. 229
               10.2.1.2 Substrates for Epitaxial Array
                        Growth ................................ 230
               10.2.1.3 Choice of Catalysts and Process
                        Variables ............................. 231
               10.2.1.4 Control of Nanowire Growth
                        Direction ............................. 232
        10.2.2 Direct Reaction and Self-Catalysis Schemes ..... 233
               10.2.2.1  Control of Growth Direction .......... 239
        10.2.3 Synthesis of Nanotubes ......................... 240
        10.2.4 Micro/Nanomorphologies ......................... 243
               10.2.4.1 III-Nitride Nanobelts ................. 243
               10.2.4.2 Tapered Morphologies .................. 245
   10.3 Branching of Nanowires ................................ 247
        10.3.1 Homobranching or "Tree-Like" Structures ........ 247
        10.3.2 Heterobranching ................................ 248
   10.4 Diameter Reduction of III-Nitride Nanowires ........... 249
   10.5 Direction-Dependent Properties ........................ 252
   References ................................................. 254
11 Other Nanowires ............................................ 257
   11.1 Antimonides ........................................... 257
   11.2 Selenides ............................................. 260
        11.2.1 Zinc Selenide .................................. 260
        11.2.2 Other Selenides ................................ 263
   11.3 Tellurides ............................................ 264
        11.3.1 Bismuth Telluride .............................. 264
        11.3.2 Cadmium Telluride .............................. 265
        11.3.3 Other Tellurides ............................... 265
   11.4 Sulfides .............................................. 266
        11.4.1 Zinc Sulfide ................................... 266
        11.4.2 Other Sulfides ................................. 267
   11.5 Silicides ............................................. 269
   References ................................................. 269
12 Applications in Electronics ................................ 275
   12.1 Introduction .......................................... 275
   12.2 Silicon Nanowire Transistors .......................... 278
   12.3 Vertical Transistors .................................. 280
   12.4 Germanium Nanowire Transistors ........................ 284
   12.5 Zinc Oxide and Other Nanowires in Electronics ......... 286
   12.6 III-V Transistors ..................................... 289
   12.7 Memory Devices ........................................ 290
        12.7.1  Phase-Change Random Access Memory ............. 292
   References ................................................. 296
13 Applications in Optoelectronics ............................ 299
   13.1 Introduction .......................................... 299
   13.2 Photodetectors ........................................ 299
   13.3 Light-Emitting Diodes ................................. 303
   13.4 Nanoscale Lasers ...................................... 306
   References ................................................. 310
14 Applications in Sensors .................................... 313
   14.1 Introduction .......................................... 313
   14.2 Chemical Sensors ...................................... 314
        14.2.1 Sensor Requirements and the Role
               of Nanomaterials ............................... 314
        14.2.2 Nanowires in Sensor Fabrication ................ 317
        14.2.3 Sensing Mechanisms ............................. 327
        14.2.4 Selectivity and Electronic Nose ................ 331
   14.3 Biosensors ............................................ 337
        14.3.1  Nanoelectrode Arrays .......................... 340
   References ................................................. 344
15 Applications in the Energy Sector .......................... 349
   15.1 Introduction .......................................... 349
   15.2 Solar Cells ........................................... 350
        15.2.1 Dye-Sensitized Solar Cells ..................... 350
               15.2.1.1 Titania Nanowire-Based DSSCs .......... 353
               15.2.1.2 ZnO Nanowire-Based DSSCs .............. 357
               15.2.1.3 SnO2 NW-Based DSSCs ................... 358
               15.2.1.4 Inorganic Nanotubes, Polymers, and
                        Nb2O5 Nanowires for DSSCs ............. 358
               15.2.1.5 Quantum Dot Sensitizers for
                        Nanowire-Based Solar Cells ............ 360
               15.2.1.6 Hybrid/Composite Structures ........... 360
               15.2.1.7 Transport and Recombination ........... 363
        15.2.2 Direct Absorption PEC Cells .................... 366
        15.2.3 p-n Junction Solar Cells ....................... 366
        15.2.4 PEC Cells for Chemical Conversion .............. 368
   15.3 Electrochromic Devices ................................ 373
   15.4 Li-Ion Batteries ...................................... 377
        15.4.1 Challenges with Anode Materials ................ 378
        15.4.2 Challenges Facing Cathode Materials ............ 379
        15.4.3 One-Dimensional Materials for Anodes ........... 380
               15.4.3.1 Carbon Nanotubes (CNTs) ............... 380
               15.4.3.2 Metal/Metal Oxide Nanowires ........... 381
               15.4.3.3 Nanowires of Silicon and Related
                        Materials ............................. 386
        15.4.4 Rational Concepts for Nanowire-Based
               Architectures .................................. 387
               15.4.4.1 A Concept of Nanometal Cluster-
                        Decorated Metal Oxide Nanowires ....... 387
               15.4.4.2 Nanowire Arrays on Conducting
                        Substrates ............................ 389
               15.4.4.3 Miscellaneous Concepts of 3-D
                        Geometries ............................ 390
        15.4.5 Nanowire-Based Materials for Cathodes .......... 391
   References ................................................. 393
16 Other Applications ......................................... 399
   16.1 Field Emission Devices ................................ 399
        16.1.1 Background ..................................... 399
        16.1.2 Work Function (Ф) .............................. 400
        16.1.3 Field Emission Testing ......................... 401
        16.1.4 Field Emission Characteristics of
               Nanowire-Based Materials ....................... 404
   16.2 Thermoelectric Devices ................................ 414
   References ................................................. 416

Index ......................................................... 421


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:22:34 2019. Размер: 21,653 bytes.
Посещение N 1653 c 13.09.2011