Gurtin M.E. The mechanics and thermodynamics of continua (Cambridge, 2010). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаGurtin M.E. The mechanics and thermodynamics of continua. - Cambridge: Cambridge University Press, 2010. - xxi, 694 p.: ill. - Ref.: p.671-681. - Ind.: 683-694. - ISBN 978-0-521-40598-0
 

Оглавление / Contents
 
Preface ....................................................... xix

PART I
VECTOR AND TENSOR ALGEBRA ....................................... 1

1   Vector Algebra .............................................. 3
2   Tensor Algebra .............................................. 9

PART II
VECTOR AND TENSOR ANALYSIS ..................................... 39
  
3   Differentiation ............................................ 41
4   Integral Theorems .......................................... 52

PART III
KINEMATICS ..................................................... 59

5   Motion of a Body ........................................... 61
6   The Deformation Gradient ................................... 64
7   Stretch, Strain, and Rotation .............................. 69
8   Deformation of Volume and Area ............................. 75
9   Material and Spatial Descriptions of Fields ................ 80
10  Special Motions ............................................ 86
11  Stretching and Spin in an Arbitrary Motion ................. 89
12  Material and Spatial Tensor Fields. Fullback and 
    Pushforward ................................................ 95
13  Modes of Evolution for Vector and Tensor Fields ............ 98
14  Motions with Constant Velocity Gradient ................... 107
15  Material and Spatial Integration .......................... 109
16  Reynolds' Transport Relation. Isochoric Motions ........... 113
17  More Kinematics ........................................... 115

PART IV
BASIC MECHANICAL PRINCIPLES ................................... 125

18  Balance of Mass ........................................... 127
19  Forces and Moments. Balance Laws for Linear and Angular
    Momentum .................................................. 131
20  Frames of Reference ....................................... 146
21  Frame-Indifference Principle .............................. 157
22  Alternative Formulations of the Force and Moment 
    Balances .................................................. 161
23  Mechanical Laws for a Spatial Control Volume .............. 168
24  Referential Forms for the Mechanical Laws ................. 173
25  Further Discussion of Stress .............................. 177

PART V
BASIC THERMODYNAMICAL PRINCIPLES .............................. 181

26  The First Law: Balance of Energy .......................... 183
27  The Second Law: Nonnegative Production of Entropy ......... 186
28  General Theorems .......................................... 190
29  A Free-Energy Imbalance for Mechanical Theories ........... 194
30  The First Two Laws for a Spatial Control Volume ........... 197
31  The First Two Laws Expressed Referentially ................ 199

PART VI
MECHANICAL AND THERMODYNAMICAL LAWS AT A SHOCK WAVE ........... 207

32  Shock Wave Kinematics ..................................... 209
33  Basic Laws at a Shock Wave: Jump Conditions ............... 216

PART VII
INTERLUDE: BASIC HYPOTHESES FOR DEVELOPING PHYSICALLY
MEANINGFUL CONSTITUTIVE THEORIES .............................. 221

34  General Considerations .................................... 223
35  Constitutive Response Functions ........................... 224
36  Frame-Indifference and Compatibility with 
    Thermodynamics ............................................ 225

PART VIII
RIGID HEAT CONDUCTORS ......................................... 227

37  Basic Laws ................................................ 229
38  General Constitutive Equations ............................ 230
39  Thermodynamics and Constitutive Restrictions: The
    Coleman-Noll Procedure .................................... 232
40  Consequences of the State Restrictions .................... 234
41  Consequences of the Heat-Conduction Inequality ............ 236
42  Fourier's Law ............................................. 237

PART IX
THE MECHANICAL THEORY OF COMPRESSIBLE AND INCOMPRESSIBLE 
FLUIDS ........................................................ 239

43  Brief Review .............................................. 241
44  Elastic Fluids ............................................ 244
45  Compressible, Viscous Fluids .............................. 250
46  Incompressible Fluids ..................................... 259

PART X
MECHANICAL THEORY OF ELASTIC SOLIDS ........................... 271

47  Brief Review .............................................. 273
48  Constitutive Theory ....................................... 276
49  Summary of Basic Equations. Initial/Boundary-Value 
    Problems .................................................. 282
50  Material Symmetry ......................................... 284
51  Simple Shear of a Homogeneous, Isotropic Elastic Body ..... 294
52  The Linear Theory of Elasticity ........................... 297
53  Digression: Incompressibility ............................. 316
54  Incompressible Elastic Materials .......................... 319
55  Approximately Incompressible Elastic Materials ............ 326

PART XI
THERMOELASTICITY .............................................. 331

56  Brief Review .............................................. 333
57  Constitutive Theory ....................................... 335
58  Natural Reference Configuration for a Given Temperature ... 348
59  Linear Thermoelasticity ................................... 354

PART XII
SPECIES DIFFUSION COUPLED TO ELASTICITY ....................... 361

60  Balance Laws for Forces, Moments, and the Conventional
    External Power ............................................ 363
61  Mass Balance for a Single Diffusing Species ............... 364
62  Free-Energy Imbalance Revisited. Chemical Potential ....... 366
63  Multiple Species .......................................... 369
64  Digression: The Thermodynamic Laws in the Presence of 
    Species Transport ......................................... 371
65  Referential Laws .......................................... 374
66  Constitutive Theory for a Single Species .................. 377
67  Material Symmetry ......................................... 385
68  Natural Reference Configuration ........................... 388
69  Summary of Basic Equations for a Single Species ........... 390
70  Constitutive Theory for Multiple Species .................. 391
71  Summary of Basic Equations for N Independent Species ...... 396
72  Substitutional Alloys ..................................... 398
73  Linearization ............................................. 408

PART XIII
THEORY OF ISOTROPIC PLASTIC SOLIDS UNDERGOING SMALL 
DEFORMATIONS .................................................. 415

74  Some Phenomenological Aspects of the Elastic-Plastic
    Stress-Strain Response of Polycrystalline Metals .......... 417
75  Formulation of the Conventional Theory. Preliminaries ..... 422
76  Formulation of the Mises Theory of Plastic Flow ........... 426
77  Inversion of the Mises Flow Rule: Ėp in Terms of Ė 
    and T ..................................................... 445
78  Rate-Dependent Plastic Materials .......................... 449
79  Maximum Dissipation ....................................... 454
80  Hardening Characterized by a Defect Energy ................ 465
81  The Thermodynamics of Mises-Hill Plasticity ............... 469
82  Formulation of Initial/Boundary-Value Problems for the
    Mises Flow Equations as Variational Inequalities .......... 479

PART XIV
SMALL DEFORMATION, ISOTROPIC PLASTICITY BASED ON
THE PRINCIPLE OF VIRTUAL POWER ................................ 485

83  Introduction .............................................. 487
84  Conventional Theory Based on the Principle of Virtual
    Power ..................................................... 489
85  Basic Constitutive Theory ................................. 499
86  Material Stability and Its Relation to Maximum
    Dissipation ............................................... 501

PART XV
STRAIN GRADIENT PLASTICITY BASED ON THE PRINCIPLE 
OF VIRTUAL POWER .............................................. 505

87  Introduction .............................................. 507
88  Kinematics ................................................ 509
89  The Gradient Theory of Aifantis ........................... 512
90  The Gradient Theory of Gurtin and Anand ................... 524

PART XVI
LARGE-DEFORMATION THEORY OF ISOTROPIC PLASTIC SOLIDS .......... 539

91  Kinematics ................................................ 541
92  Virtual-Power Formulation of the Standard and 
    Microscopic Force Balances ................................ 548
93  Free-Energy Imbalance ..................................... 553
94  Two New Stresses .......................................... 555
95  Constitutive Theory ....................................... 557
96  Summary of the Basic Equations. Remarks ................... 566
97  Plastic Irrotationality: The Condition Wp ≡ 0 ............. 567
98  Yield Surface. Yield Function. Consistency Condition ...... 569
99  |Dp| in Terms of Ė and Me .................................. 571
100 Evolution Equation for the Second Piola Stress ............ 576
101 Rate-Dependent Plastic Materials .......................... 579

PART XVII
THEORY OF SINGLE CRYSTALS UNDERGOING SMALL DEFORMATIONS ....... 583

102 Basic Single-Crystal Kinematics ........................... 586
103 The Burgers Vector and the Flow of Screw and Edge 
    Dislocations .............................................. 588
104 Conventional Theory of Single-Crystals .................... 593
105 Single-Crystal Plasticity at Small Length-Scales: 
    A Small-Deformation Gradient Theory ....................... 604

PART XVIII
SINGLE CRYSTALS UNDERGOING LARGE DEFORMATIONS ................. 621

106 Basic Single-Crystal Kinematics ........................... 623
107 The Burgers Vector and the Flow of Screw and Edge 
    Dislocations .............................................. 626
108 Virtual-Power Formulation of the Standard and 
    Microscopic Force Balances ................................ 634
109 Free-Energy Imbalance ..................................... 639
110 Conventional Theory ....................................... 641
111 Taylor's Model of Polycrystal ............................. 646
112 Single-Crystal Plasticity at Small Length Scales: 
    A Large-Deformation Gradient Theory ....................... 653
113 Isotropic Functions ....................................... 665
114 The Exponential of a Tensor ............................... 669

References .................................................... 671
Index ......................................................... 683


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:22:34 2019. Размер: 14,717 bytes.
Посещение N 1602 c 13.09.2011