Preface ....................................................... xix
PART I
VECTOR AND TENSOR ALGEBRA ....................................... 1
1 Vector Algebra .............................................. 3
2 Tensor Algebra .............................................. 9
PART II
VECTOR AND TENSOR ANALYSIS ..................................... 39
3 Differentiation ............................................ 41
4 Integral Theorems .......................................... 52
PART III
KINEMATICS ..................................................... 59
5 Motion of a Body ........................................... 61
6 The Deformation Gradient ................................... 64
7 Stretch, Strain, and Rotation .............................. 69
8 Deformation of Volume and Area ............................. 75
9 Material and Spatial Descriptions of Fields ................ 80
10 Special Motions ............................................ 86
11 Stretching and Spin in an Arbitrary Motion ................. 89
12 Material and Spatial Tensor Fields. Fullback and
Pushforward ................................................ 95
13 Modes of Evolution for Vector and Tensor Fields ............ 98
14 Motions with Constant Velocity Gradient ................... 107
15 Material and Spatial Integration .......................... 109
16 Reynolds' Transport Relation. Isochoric Motions ........... 113
17 More Kinematics ........................................... 115
PART IV
BASIC MECHANICAL PRINCIPLES ................................... 125
18 Balance of Mass ........................................... 127
19 Forces and Moments. Balance Laws for Linear and Angular
Momentum .................................................. 131
20 Frames of Reference ....................................... 146
21 Frame-Indifference Principle .............................. 157
22 Alternative Formulations of the Force and Moment
Balances .................................................. 161
23 Mechanical Laws for a Spatial Control Volume .............. 168
24 Referential Forms for the Mechanical Laws ................. 173
25 Further Discussion of Stress .............................. 177
PART V
BASIC THERMODYNAMICAL PRINCIPLES .............................. 181
26 The First Law: Balance of Energy .......................... 183
27 The Second Law: Nonnegative Production of Entropy ......... 186
28 General Theorems .......................................... 190
29 A Free-Energy Imbalance for Mechanical Theories ........... 194
30 The First Two Laws for a Spatial Control Volume ........... 197
31 The First Two Laws Expressed Referentially ................ 199
PART VI
MECHANICAL AND THERMODYNAMICAL LAWS AT A SHOCK WAVE ........... 207
32 Shock Wave Kinematics ..................................... 209
33 Basic Laws at a Shock Wave: Jump Conditions ............... 216
PART VII
INTERLUDE: BASIC HYPOTHESES FOR DEVELOPING PHYSICALLY
MEANINGFUL CONSTITUTIVE THEORIES .............................. 221
34 General Considerations .................................... 223
35 Constitutive Response Functions ........................... 224
36 Frame-Indifference and Compatibility with
Thermodynamics ............................................ 225
PART VIII
RIGID HEAT CONDUCTORS ......................................... 227
37 Basic Laws ................................................ 229
38 General Constitutive Equations ............................ 230
39 Thermodynamics and Constitutive Restrictions: The
Coleman-Noll Procedure .................................... 232
40 Consequences of the State Restrictions .................... 234
41 Consequences of the Heat-Conduction Inequality ............ 236
42 Fourier's Law ............................................. 237
PART IX
THE MECHANICAL THEORY OF COMPRESSIBLE AND INCOMPRESSIBLE
FLUIDS ........................................................ 239
43 Brief Review .............................................. 241
44 Elastic Fluids ............................................ 244
45 Compressible, Viscous Fluids .............................. 250
46 Incompressible Fluids ..................................... 259
PART X
MECHANICAL THEORY OF ELASTIC SOLIDS ........................... 271
47 Brief Review .............................................. 273
48 Constitutive Theory ....................................... 276
49 Summary of Basic Equations. Initial/Boundary-Value
Problems .................................................. 282
50 Material Symmetry ......................................... 284
51 Simple Shear of a Homogeneous, Isotropic Elastic Body ..... 294
52 The Linear Theory of Elasticity ........................... 297
53 Digression: Incompressibility ............................. 316
54 Incompressible Elastic Materials .......................... 319
55 Approximately Incompressible Elastic Materials ............ 326
PART XI
THERMOELASTICITY .............................................. 331
56 Brief Review .............................................. 333
57 Constitutive Theory ....................................... 335
58 Natural Reference Configuration for a Given Temperature ... 348
59 Linear Thermoelasticity ................................... 354
PART XII
SPECIES DIFFUSION COUPLED TO ELASTICITY ....................... 361
60 Balance Laws for Forces, Moments, and the Conventional
External Power ............................................ 363
61 Mass Balance for a Single Diffusing Species ............... 364
62 Free-Energy Imbalance Revisited. Chemical Potential ....... 366
63 Multiple Species .......................................... 369
64 Digression: The Thermodynamic Laws in the Presence of
Species Transport ......................................... 371
65 Referential Laws .......................................... 374
66 Constitutive Theory for a Single Species .................. 377
67 Material Symmetry ......................................... 385
68 Natural Reference Configuration ........................... 388
69 Summary of Basic Equations for a Single Species ........... 390
70 Constitutive Theory for Multiple Species .................. 391
71 Summary of Basic Equations for N Independent Species ...... 396
72 Substitutional Alloys ..................................... 398
73 Linearization ............................................. 408
PART XIII
THEORY OF ISOTROPIC PLASTIC SOLIDS UNDERGOING SMALL
DEFORMATIONS .................................................. 415
74 Some Phenomenological Aspects of the Elastic-Plastic
Stress-Strain Response of Polycrystalline Metals .......... 417
75 Formulation of the Conventional Theory. Preliminaries ..... 422
76 Formulation of the Mises Theory of Plastic Flow ........... 426
77 Inversion of the Mises Flow Rule: Ėp in Terms of Ė
and T ..................................................... 445
78 Rate-Dependent Plastic Materials .......................... 449
79 Maximum Dissipation ....................................... 454
80 Hardening Characterized by a Defect Energy ................ 465
81 The Thermodynamics of Mises-Hill Plasticity ............... 469
82 Formulation of Initial/Boundary-Value Problems for the
Mises Flow Equations as Variational Inequalities .......... 479
PART XIV
SMALL DEFORMATION, ISOTROPIC PLASTICITY BASED ON
THE PRINCIPLE OF VIRTUAL POWER ................................ 485
83 Introduction .............................................. 487
84 Conventional Theory Based on the Principle of Virtual
Power ..................................................... 489
85 Basic Constitutive Theory ................................. 499
86 Material Stability and Its Relation to Maximum
Dissipation ............................................... 501
PART XV
STRAIN GRADIENT PLASTICITY BASED ON THE PRINCIPLE
OF VIRTUAL POWER .............................................. 505
87 Introduction .............................................. 507
88 Kinematics ................................................ 509
89 The Gradient Theory of Aifantis ........................... 512
90 The Gradient Theory of Gurtin and Anand ................... 524
PART XVI
LARGE-DEFORMATION THEORY OF ISOTROPIC PLASTIC SOLIDS .......... 539
91 Kinematics ................................................ 541
92 Virtual-Power Formulation of the Standard and
Microscopic Force Balances ................................ 548
93 Free-Energy Imbalance ..................................... 553
94 Two New Stresses .......................................... 555
95 Constitutive Theory ....................................... 557
96 Summary of the Basic Equations. Remarks ................... 566
97 Plastic Irrotationality: The Condition Wp ≡ 0 ............. 567
98 Yield Surface. Yield Function. Consistency Condition ...... 569
99 |Dp| in Terms of Ė and Me .................................. 571
100 Evolution Equation for the Second Piola Stress ............ 576
101 Rate-Dependent Plastic Materials .......................... 579
PART XVII
THEORY OF SINGLE CRYSTALS UNDERGOING SMALL DEFORMATIONS ....... 583
102 Basic Single-Crystal Kinematics ........................... 586
103 The Burgers Vector and the Flow of Screw and Edge
Dislocations .............................................. 588
104 Conventional Theory of Single-Crystals .................... 593
105 Single-Crystal Plasticity at Small Length-Scales:
A Small-Deformation Gradient Theory ....................... 604
PART XVIII
SINGLE CRYSTALS UNDERGOING LARGE DEFORMATIONS ................. 621
106 Basic Single-Crystal Kinematics ........................... 623
107 The Burgers Vector and the Flow of Screw and Edge
Dislocations .............................................. 626
108 Virtual-Power Formulation of the Standard and
Microscopic Force Balances ................................ 634
109 Free-Energy Imbalance ..................................... 639
110 Conventional Theory ....................................... 641
111 Taylor's Model of Polycrystal ............................. 646
112 Single-Crystal Plasticity at Small Length Scales:
A Large-Deformation Gradient Theory ....................... 653
113 Isotropic Functions ....................................... 665
114 The Exponential of a Tensor ............................... 669
References .................................................... 671
Index ......................................................... 683
|