Silverman J.H. The arithmetic of elliptic curves (New York, 2009). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаSilverman J.H. The arithmetic of elliptic curves. - 2nd ed. - New York: Springer-Verlag, 2009. - xx, 513 p.: ill. - (Graduate texts in mathematics; 106). - Bibliogr.: p.473-487. - Ind.: p.489-513. - ISBN 978-0-387-09493-9
 

Оглавление / Contents
 
Preface to the Second Edition ................................... v
Preface to the First Edition .................................. vii
Introduction ................................................. xvii

CHAPTER I
Algebraic Varieties ............................................. 1
§1. Affine Varieties ............................................ 1
§2. Projective Varieties ........................................ 6
§3. Maps Between Varieties ..................................... 11
Exercises ...................................................... 14

CHAPTER II
Algebraic Curves ............................................... 17
§1. Curves ..................................................... 17
§2. Maps Between Curves ........................................ 19
§3. Divisors ................................................... 27
§4. Differentials .............................................. 30
§5. The Riemann-Roch Theorem ................................... 33
Exercises ...................................................... 37

CHAPTER III
The Geometry of Elliptic Curves ................................ 41
§1. Weierstrass Equations ...................................... 42
§2. The Group Law .............................................. 51
§3. Elliptic Curves ............................................ 58
§4. Isogenics .................................................. 66
§5. The Invariant Differential ................................. 75
§6. The Dual Isogeny ........................................... 80
§7. The Tate Module ............................................ 87
§8. The Weil Pairing ........................................... 92
§9. The Endomorphism Ring ...................................... 99
§10.The Automorphism Group .................................... 103
Exercises ..................................................... 104

CHAPTER IV
The Formal Group of an Elliptic Curve ......................... 115
§1. Expansion Around O ........................................ 115
§2. Formal Groups ............................................. 120
§3. Groups Associated to Formal Groups ........................ 123
§4. The Invariant Differential ................................ 125
§5. The Formal Logarithm ...................................... 127
§6. Formal Groups over Discrete Valuation Rings ............... 129
§7. Formal Groups in Characteristic ρ ......................... 132
Exercises ..................................................... 135

CHAPTER V
Elliptic Curves over Finite Fields ............................ 137
§1. Number of Rational Points ................................. 137
§2. The Weil Conjectures ...................................... 140
§3. The Endomorphism Ring ..................................... 144
§4. Calculating the Hasse Invariant ........................... 148
Exercises ..................................................... 153

CHAPTER VI
Elliptic Curves over fig.3 ........................................ 157
§1. Elliptic Integrals ........................................ 158
§ 2. Elliptic Functi on s ..................................... 161
§3. Construction of Elliptic Functions ........................ 165
§4. Maps Analytic and Maps Algebraic .......................... 171
§5. Uniformization ............................................ 173
§6. The Lefschetz Principle ................................... 177
Exercises ..................................................... 178

CHAPTER VII
Elliptic Curves over Local Fields ............................. 185
§1. Minimal Weierstrass Equations ............................. 185
§2. Reduction Modulo π ........................................ 187
§3. Points of Finite Order .................................... 192
§4. The Action of Inertia ..................................... 194
§5. Good and Bad Reduction .................................... 196
§6. The Group E/E0 ............................................ 199
§7. The Criterion of Neron-Ogg-Shafarevich .................... 201
Exercises ..................................................... 203

CHAPTER VIII
Elliptic Curves over Global Fields ............................ 207
§1. The Weak Mordell-Weil Theorem ............................. 208
§2. The Kummer Pairing via Cohomology ......................... 215
§3. The Descent Procedure ..................................... 218
§4. The Mordell-Weil Theorem over fig.4 ........................... 220
§5. Heights on Projective Space ............................... 224
§6. Heights on Elliptic Curves ................................ 234
§7. Torsion Points ............................................ 240
§8. The Minimal Discriminant .................................. 243
§9. The Canonical Height ...................................... 247
§10.The Rank of an Elliptic Curve ............................. 254
§11.Szpiro's Conjecture and ABC ............................... 255
Exercises ..................................................... 261

CHAPTER IX
Integral Points on Elliptic Curves ............................ 269
§1. Diophantine Approximation ................................. 270
§2. Distance Functions ........................................ 273
§3. Siegel's Theorem .......................................... 276
§4. The S-Unit Equation ....................................... 281
§5. Effective Methods ......................................... 286
§6. Shafarevich's Theorem ..................................... 293
§7. The Curve Y2 = X3 + D ..................................... 296
§8. Roth's Theorem—An Overview ................................ 299
Exercises ..................................................... 302

CHAPTER X
Computing the Mordell-Weil Group .............................. 309
§1. An Example ................................................ 310
§2. Twisting—General Theory ................................... 318
§3. Homogeneous Spaces ........................................ 321
§4. The Selmer and Shafarevich-Tate Groups .................... 331
§5. Twisting—Elliptic Curves .................................. 341
§6. The Curve Y2 = X3 + DX .................................... 344
Exercises ..................................................... 355

CHAPTER XI
Algorithmic Aspects of Elliptic Curves ........................ 363
§1. Double-and-Add Algorithms ................................. 364
§2. Lenstra's Elliptic Curve Factorization Algorithm .......... 366
§3. Counting the Number of Points in E(fig.2q) .................... 372
§4. Elliptic Curve Cryptography ............................... 376
§5. Solving the ECDLP: The General Case ....................... 381
§6. Solving the ECDLP: Special Cases .......................... 386
§7. Pairing-Based Cryptography ................................ 390
§8. Computing the Weil Pairing ................................ 393
§9. The Tate-Lichtenbaum Pairing .............................. 397
Exercises ..................................................... 403

APPENDIX A
Elliptic Curves in Characteristics 2 and 3 .................... 409
Exercises ..................................................... 414

APPENDIX В
Group Cohomology (H0 and H1) .................................. 415
§1. Cohomology of Finite Groups ............................... 415
§2. Galois Cohomology ......................................... 418
§3. Nonabelian Cohomology ..................................... 421
Exercises ..................................................... 422

APPENDIX С
Further Topics: An Overview ................................... 425
§11.Complex Multiplication .................................... 425
§12.Modular Functions ......................................... 429
§13.Modular Curves ............................................ 439
§14.Tate Curves ............................................... 443
§15.Néron Models and Tate's Algorithm ......................... 446
§16.L-Series .................................................. 449
§17.Duality Theory ............................................ 453
§18.Local Height Functions .................................... 454
§19.The Image of Galois ....................................... 455
§20.Function Fields and Specialization Theorems ............... 456
§21.Variation of αp and the Sato-Tate Conjecture .............. 458

Notes on Exercises ............................................ 461
List of Notation .............................................. 467
References .................................................... 473
Index ......................................................... 489


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:22:34 2019. Размер: 12,799 bytes.
Посещение N 1766 c 06.09.2011