Goedbloed J.P. (Hans). Advanced magnetohydrodynamics: with applications to laboratory and astrophysical plasmas (New York, 2010). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаGoedbloed J.P. (Hans). Advanced magnetohydrodynamics: with applications to laboratory and astrophysical plasmas / J.P. (Hans) Goedbloed, R.Keppens, S.Poedts. - New York: Cambridge University Press, 2010. - xvi, 634 p.: ill. - Ref.: p.604-628. - Ind.: p.629-634. - ISBN 978-0-521-87957-6
 

Место хранения: 015 | Библиотека Института гидродинамики CO РАН | Новосибирск

Оглавление / Contents
 
Preface page ................................................. xiii

Part III   Flow and dissipation ................................. 1

12  Waves and instabilities of stationary plasmas ............... 3
    12.1  Laboratory and astrophysical plasmas .................. 3
          12.1.1  Grand vision: magnetized plasma on all
                  scales ........................................ 3
          12.1.2  Differences between laboratory and
                  astrophysical plasmas ......................... 6
          12.1.3  Plasmas with background flow ................. 12
    12.2  Spectral theory of stationary plasmas ................ 13
          12.2.1  Basic equations .............................. 13
          12.2.2  Frieman-Rotenberg formulation ................ 16
          12.2.3  Self-adjointness of the generalized force
                  operator ..................................... 22
          12.2.4  Energy conservation and stability ............ 27
    12.3  Solution paths in the complex ω plane ................ 35
          12.3.1  Opening up the boundaries .................... 35
          12.3.2  Approach to eigenvalues ...................... 40
    12.4  Literature and exercises ............................. 47

13  Shear flow and rotation .................................... 49
    13.1  Spectral theory of plane plasmas with shear flow ..... 49
          13.1.1  Gravito-MHD wave equation for plane plasma
                  flow ......................................... 49
          13.1.2  Kelvin-Helmholtz instabilities in interface
                  plasmas ...................................... 55
          13.1.3  Continua and oscillation theorem fig.6 for
                  real eigenvalues ............................. 59
          13.1.4  Complex eigenvalues and the alternator ....... 65
    13.2  Case study: flow-driven instabilities in diffuse
          plasmas .............................................. 71
          13.2.1  Rayleigh-Taylor instabilities of magnetized
                  plasmas ...................................... 73
          13.2.2  Kelvin-Helmholtz instabilities of ordinary
                  fluids ....................................... 76
          13.2.3  Gravito-MHD instabilities of stationary
                  plasmas ...................................... 85
          13.2.4  Oscillation theorem С for complex
                  eigenvalues .................................. 91
    13.3  Spectral theory of rotating plasmas .................. 93
          13.3.1  MHD wave equation for cylindrical flow ....... 93
          13.3.2  Local stability .............................. 98
          13.3.3  WKB approximation ........................... 102
    13.4  Rotational instabilities ............................ 104
          13.4.1  Rigid rotation of incompressible plasmas .... 104
          13.4.2  Magneto-rotational instability: local
                  analysis .................................... 112
          13.4.3  Magneto-rotational instability: numerical
                  solutions ................................... 118
    13.5  Literature and exercises ............................ 123

14  Resistive plasma dynamics ................................. 127
    14.1  Plasmas with dissipation ............................ 127
          14.1.1  Conservative versus dissipative dynamical
                  systems ..................................... 127
          14.1.2  Stability of force-free magnetic fields:
                  a trap ...................................... 128
    14.2  Resistive instabilities ............................. 135
          14.2.1  Basic equations ............................. 135
          14.2.2  Tearing modes ............................... 138
          14.2.3  Resistive interchange modes ................. 149
    14.3  Resistive spectrum .................................. 150
          14.3.1  Resistive wall mode ......................... 150
          14.3.2  Spectrum of homogeneous plasma .............. 155
          14.3.3  Spectrum of inhomogeneous plasma ............ 158
    14.4  Reconnection ........................................ 162
          14.4.1  Reconnection in 2D Harris sheet ............. 162
          14.4.2  Petschek reconnection ....................... 168
          14.4.3  Kelvin-Helmholtz induced tearing
                  instabilities ............................... 169
          14.4.4  Extended MHD and reconnection ............... 171
    14.5  Literature and exercises ............................ 175

15  Computational linear MHD .................................. 177
    15.1  Spatial discretization techniques ................... 178
          15.1.1  Basic concepts for discrete
                  representations ............................. 180
          15.1.2  Finite difference methods ................... 182
          15.1.3  Finite element method ....................... 186
          15.1.4  Spectral methods ............................ 196
          15.1.5  Mixed representations ....................... 201
    15.2  Linear MHD: boundary value problems ................. 204
          15.2.1  Linearized MHD equations .................... 204
          15.2.2  Steady solutions to linearly driven
                  problems .................................... 206
          15.2.3  MHD eigenvalue problems ..................... 209
          15.2.4 Extended MHD examples ........................ 211
    15.3  Linear algebraic methods ............................ 217
          15.3.1  Direct and iterative linear system
                  solvers ..................................... 217
          15.3.2  Eigenvalue solvers: the QR algorithm ........ 220
          15.3.3  Inverse iteration for eigenvalues and
                  eigenvectors ................................ 221
          15.3.4  Jacobi-Davidson method ...................... 222
    15.4  Linear MHD: initial value problems .................. 225
          15.4.1  Temporal discretizations: explicit
                  methods ..................................... 225
          15.4.2  Disparateness of MHD time scales ............ 233
          15.4.3  Temporal discretizations: implicit
                  methods ..................................... 234
          15.4.4  Applications: linear MHD evolutions ......... 236
    15.5  Concluding remarks .................................. 240
    15.6  Literature and exercises ............................ 241

Part IV Toroidal plasmas ...................................... 245

16  Static equilibrium of toroidal plasmas .................... 247
    16.1  Axi-symmetric equilibrium ........................... 247
          16.1.1  Equilibrium in tokamaks ..................... 247
          16.1.2  Magnetic field geometry ..................... 252
          16.1.3  Cylindrical limits .......................... 256
          16.1.4  Global confinement and parameters ........... 260
    16.2  Grad-Shafranov equation ............................. 269
          16.2.1  Derivation of the Grad-Shafranov equation ... 269
          16.2.2  Large aspect ratio expansion: internal
                  solution .................................... 271
          16.2.3  Large aspect ratio expansion: external
                  solution .................................... 277
    16.3  Exact equilibrium solutions ......................... 284
          16.3.1  Poloidal flux scaling ....................... 284
          16.3.2  Soloviev equilibrium ........................ 289
          16.3.3  Numerical equilibria ........................ 293
    16.4  Extensions .......................................... 299
          16.4.1  Toroidal rotation ........................... 299
          16.4.2  Gravitating plasma equilibria ............... 301
          16.4.3  Challenges .................................. 302
    16.5  Literature and exercises ............................ 304

17  Linear dynamics of static toroidal plasmas ................ 307
    17.1  "Ad more geometrico" ................................ 307
          17.1.1  Alfvén wave dynamics in toroidal geometry ... 307
          17.1.2  Coordinates and mapping ..................... 308
          17.1.3  Geometrical-physical characteristics ........ 309
    17.2  Analysis of waves and instabilities in toroidal
          geometry ............................................ 315
          17.2.1  Spectral wave equation ...................... 315
          17.2.2  Spectral variational principle .............. 318
          17.2.3  Alfvén and slow continuum modes ............. 319
          17.2.4  Poloidal mode coupling ...................... 322
          17.2.5  Alfvén and slow ballooning modes ............ 326
    17.3  Computation of waves and instabilities in
          tokamaks ............................................ 334
          17.3.1  Ideal MHD versus resistive MHD in
                  computations ................................ 334
          17.3.2  Edge localized modes ........................ 340
          17.3.3  Internal modes .............................. 344
          17.3.4  Toroidal Alfvén eigenmodes and MHD
                  spectroscopy ................................ 347
    17.4  Literature and exercises ............................ 352

18  Linear dynamics of stationary toroidal plasmas ............ 355
    18.1  Transonic toroidal plasmas .......................... 355
    18.2  Axi-symmetric equilibrium of transonic stationary
          states .............................................. 357
          18.2.1  General equations and toroidal rescalings ... 357
          18.2.2  Elliptic and hyperbolic flow regimes ........ 365
          18.2.3  Expansion of the equilibrium in small
                  toroidicity ................................. 366
    18.3  Equations for the continuous spectrum ............... 374
          18.3.1  Reduction for straight-field-line
                  coordinates ................................. 374
          18.3.2  Continua of poloidally and toroidally
                  rotating plasmas ............................ 378
          18.3.3  Analysis of trans-slow continua for small
                  toroidicity ................................. 385
    18.4  Trans-slow continua in tokamaks and accretion
          disks ............................................... 392
          18.4.1  Tokamaks and magnetically dominated
                  accretion disks ............................. 393
          18.4.2  Gravity dominated accretion disks ........... 396
          18.4.3  A new class of transonic instabilities ...... 397
    18.5  Literature and exercises ............................ 402

Part V  Nonlinear dynamics .................................... 405

19  Computational nonlinear MHD ............................... 407
    19.1  General considerations for nonlinear conservation
          laws ................................................ 408
          19.1.1  Conservative versus primitive variable
                  formulations ................................ 408
          19.1.2  Scalar conservation law and the Riemann
                  problem ..................................... 415
          19.1.3  Numerical discretizations for a scalar
                  conservation law ............................ 420
          19.1.4  Finite volume treatments .................... 430
    19.2  Upwind-like finite volume treatments for ID MHD ..... 433
          19.2.1  The Godunov method .......................... 434
          19.2.2  A robust shock-capturing method: TVDLF ...... 440
          19.2.3  Approximate Riemann solver type schemes ..... 446
          19.2.4 Simulating ID MHD Riemann problems ........... 451
    19.3  Multi-dimensional MHD computations .................. 454
          19.3.1  fig.1В = 0 condition for shock-capturing
                  schemes ..................................... 455
          19.3.2  Example nonlinear MHD scenarios ............. 461
          19.3.3  Alternative numerical methods ............... 466
    19.4  Implicit approaches for extended MHD simulations .... 473
          19.4.1  Alternating direction implicit strategies ... 474
          19.4.2  Semi-implicit methods ....................... 475
          19.4.3  Simulating ideal and resistive instability
                  developments ................................ 481
          19.4.4  Global simulations for tokamak plasmas ...... 482
    19.5  Literature and exercises ............................ 484

20  Transonic MHD flows and shocks ............................ 487
    20.1  Transonic MHD flows ................................. 487
          20.1.1  Flow in laboratory and astrophysical
                  plasmas ..................................... 487
          20.1.2  Characteristics in space and time ........... 488
    20.2  Shock conditions .................................... 490
          20.2.1  Special case: gas dynamic shocks ............ 492
          20.2.2  MHD discontinuities without mass flow ....... 498
          20.2.3  MHD discontinuities with mass flow .......... 500
          20.2.4  Slow, intermediate and fast shocks .......... 505
    20.3  Classification of MHD shocks ........................ 507
          20.3.1  Distilled shock conditions .................. 507
          20.3.2  Time reversal duality ....................... 513
          20.3.3  Angular dependence of MHD shocks ............ 520
          20.3.4  Observational considerations of MHD
                  shocks ...................................... 527
    20.4  Stationary transonic flows .......................... 529
          20.4.1  Modeling the solar wind-magnetosphere
                  boundary .................................... 530
          20.4.2  Modeling the solar wind by itself ........... 531
          20.4.3  Example astrophysical transonic flows ....... 534
    20.5  Literature and exercises ............................ 540

21  Ideal MHD in special relativity ........................... 543
    21.1  Four-dimensional space-time: special relativistic
          concepts ............................................ 544
          21.1.1  Space-time coordinates and Lorentz
                  transformations ............................. 544
          21.1.2  Four-vectors in flat space-time and
                  invariants .................................. 547
          21.1.3  Relativistic gas dynamics and stress-
                  energy tensor ............................... 551
          21.1.4  Sound waves and shock relations in
                  relativistic gases .......................... 556
    21.2  Electromagnetism and special relativistic MHD ....... 564
          21.2.1  Electromagnetic field tensor and Maxwell's
                  equations ................................... 564
          21.2.2  Stress-energy tensor for electromagnetic
                  fields ...................................... 569
          21.2.3  Ideal MHD in special relativity ............. 570
          21.2.4  Wave dynamics in a homogeneous plasma ....... 572
          21.2.5  Shock conditions in relativistic MHD ........ 577
    21.3  Computing relativistic magnetized plasma dynamics ... 580
          21.3.1  Numerical challenges from relativistic
                  MHD ......................................... 583
          21.3.2  Example astrophysical applications .......... 584
    21.4  Literature and exercises ............................ 588

Appendices .................................................... 591
    A  Vectors and coordinates ................................ 591
       A.1  Vector identities ................................. 591
       A.2  Vector expressions in orthogonal coordinates ...... 592
       A.3  Vector expressions in non-orthogonal
            coordinates ....................................... 600

References .................................................... 604

Index ......................................................... 629


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:22:32 2019. Размер: 20,452 bytes.
Посещение N 1643 c 06.09.2011