Preface ..................................................... xix
Notations ................................................. xxiii
Chapter 1 Introduction ....................................... 1
1.1 PRELIMINARY STUDIES ...................................... 4
1.1.1 Reaction Stoichiometry, Thermodynamics, and
Synthesis Routes ................................... 4
1.2 LABORATORY EXPERIMENTS ................................... 4
1.3 ANALYSIS OF THE EXPERIMENTAL RESULTS ..................... 5
1.4 SIMULATION OF REACTOR MODELS ............................. 6
1.5 INSTALLATION OF A PILOT-PLANT UNIT ....................... 6
1.6 CONSTRUCTION OF THE FACILITY IN FULL SCALE ............... 6
REFERENCES .................................................... 7
Chapter 2 Stoichiometry and Kinetics ......................... 9
2.1 STOICHIOMETRIC MATRIX ................................... 10
2.2 REACTION KINETICS ....................................... 12
2.2.1 Elementary Reactions ............................. 13
2.2.2 Kinetics of Nonelementary Reactions: Quasi-
Steady-State and Quasi-Equilibrium
Approximations ................................... 16
2.2.2.1 Ionic and Radical Intermediates ......... 18
2.2.2.2 Catalytic Processes: Eley-Rideal
Mechanism ............................... 20
2.2.2.3 Catalytic Processes: Langmuir-
Hinshelwood Mechanism ................... 24
REFERENCES ................................................... 25
Chapter 3 Homogeneous Reactors ............................... 27
3.1 REACTORS FOR HOMOGENEOUS REACTIONS ...................... 27
3.2 HOMOGENEOUS TUBE REACTOR WITH A PLUG FLOW ............... 34
3.2.1 Mass Balance ..................................... 35
3.2.2 Energy Balance ................................... 37
3.3 HOMOGENEOUS TANK REACTOR WITH PERFECT MIXING ............ 40
3.3.1 Mass Balance ..................................... 40
3.3.2 Energy Balance ................................... 41
3.4 HOMOGENEOUS BR .......................................... 44
3.4.1 Mass Balance ..................................... 44
3.4.2 Energy Balance ................................... 45
3.5 MOLAR AMOUNT, MOLE FRACTION, REACTION EXTENT,
CONVERSION, AND CONCENTRATION ........................... 48
3.5.1 Definitions ...................................... 48
3.5.2 Relation between Molar Amount, Extent of
Reaction, Conversion, and Molar Fraction ......... 51
3.5.2.1 A System with a Single Chemical
Reaction ................................ 51
3.5.2.2 A System with Multiple Chemical
Reactions ............................... 52
3.5.3 Relationship between Concentration, Extent of
Reaction, Conversion, and Volumetric Flow Rate
in a Continuous Reactor .......................... 55
3.5.3.1 Gas-Phase Reactions ..................... 55
3.5.3.2 Liquid-Phase Reactions .................. 57
3.5.4 Relationship between Concentration, Extent of
Reaction, Conversion, and Total Pressure in a
BR ............................................... 59
3.5.4.1 Gas-Phase Reactions ..................... 59
3.5.4.2 Liquid-Phase Reactions .................. 60
3.6 STOICHIOMETRY IN MASS BALANCES .......................... 61
3.7 EQUILIBRIUM REACTOR: ADIABATIC TEMPERATURE CHANGE ....... 66
3.7.1 Mass and Energy Balances .......................... 66
3.8 ANALYTICAL SOLUTIONS FOR MASS AND ENERGY BALANCES ....... 68
3.8.1 Multiple Reactions ................................ 71
3.8.1.1 First-Order Parallel Reactions .......... 71
3.8.1.2 Momentaneous and Integral Yield for
Parallel Reactions ...................... 76
3.8.1.3 Reactor Selection and Operating
Conditions for Parallel Reactions ....... 78
3.8.1.4 First-Order Consecutive Reactions ....... 80
3.8.1.5 Consecutive-Competitive Reactions ....... 83
3.8.1.6 Product Distributions in PFRs and BRs ... 84
3.8.1.7 Product Distribution in a CSTR .......... 87
3.8.1.8 Comparison of Ideal Reactors ............ 88
3.9 NUMERICAL SOLUTION OF MASS BALANCES FOR VARIOUS COUPLED
REACTIONS ................................................ 89
REFERENCES ................................................... 92
Chapter 4 Nonideal Reactors: Residence Time Distributions .... 93
4.1 RESIDENCE TIME DISTRIBUTION IN FLOW REACTORS ............ 93
4.1.1 Residence Time as a Concept ...................... 93
4.1.2 Methods for Determining RTDs ..................... 96
4.1.2.1 Volume Element .......................... 96
4.1.2.2 Tracer Experiments ...................... 97
4.2 RESIDENCE TIME FUNCTIONS ................................ 97
4.2.1 Population Density Function E(t) ................. 98
4.2.2 Distribution Functions F(t) and F*(t) ........... 100
4.2.3 Intensity Function λ(t) ......................... 101
4.2.4 Mean Residence Time ............................. 101
4.2.5 С Function ...................................... 102
4.2.6 Dimensionless Time .............................. 102
4.2.7 Variance ........................................ 103
4.2.8 Experimental Determination of Residence Time
Functions ....................................... 103
4.2.9 RTD for a CSTR and PFR .......................... 106
4.2.10 RTD in Tube Reactors with a Laminar Flow ........ 108
4.3 SEGREGATION AND MAXIMUM MIXEDNESS ...................... 113
4.3.1 Segregation Model ............................... 113
4.3.2 Maximum Mixedness Model ......................... 114
4.4 TANKS-IN-SERIES MODEL .................................. 115
4.4.1 Residence Time Functions for the Tanks-in-
Series Model .................................... 116
4.4.2 Tanks in Series as a Chemical Reactor ........... 119
4.4.3 Maximum-Mixed Tanks-in-Series Model ............. 120
4.4.4 Segregated Tanks in Series ...................... 120
4.4.5 Comparison of Tanks-in-Series Models ............ 121
4.4.6 Existence of Micro- and Macrofluids ............. 121
4.5 AXIAL DISPERSION MODEL ................................. 123
4.5.1 RTDs for the Axial Dispersion Model ............. 123
4.5.2 Axial Dispersion Model as a Chemical Reactor .... 128
4.5.3 Estimation of the Axial Dispersion
Coefficient ..................................... 133
4.6 TUBE REACTOR WITH A LAMINAR FLOW ....................... 134
4.6.1 Laminar Reactor without Radial Diffusion ........ 134
4.6.2 Laminar Reactor with a Radial Diffusion: Axial
Dispersion Model ................................ 137
REFERENCES .................................................. 139
Chapter 5 Catalytic Two-Phase Reactors ..................... 141
5.1 REACTORS FOR HETEROGENEOUS CATALYTIC GAS- AND LIQUID-
PHASE REACTIONS ........................................ 143
5.2 PACKED BED ............................................. 156
5.2.1 Mass Balances for the One-Dimensional Model ..... 160
5.2.2 Effectiveness Factor ............................ 162
5.2.2.1 Chemical Reaction and Diffusion
inside a Catalyst Particle ............. 162
5.2.2.2 Spherical Particle ..................... 168
5.2.2.3 Slab ................................... 172
5.2.2.4 Asymptotic Effectiveness Factors for
Arbitrary Kinetics ..................... 174
5.2.2.5 Nonisothermal Conditions ............... 180
5.2.3 Energy Balances for the One-Dimensional Model ... 184
5.2.4 Mass and Energy Balances for the Two-
Dimensional Model ............................... 189
5.2.5 Pressure Drop in Packed Beds .................... 198
5.3 FLUIDIZED BED .......................................... 199
5.3.1 Mass Balances According to Ideal Models ......... 201
5.3.2 Kunii-Levenspiel Model for Fluidized Beds ....... 202
5.3.2.1 Kunii-Levenspiel Parameters ............. 206
5.4 PARAMETERS FOR PACKED BED AND FLUIDIZED BED REACTORS ... 210
REFERENCES .................................................. 212
Chapter 6 Catalytic Three-Phase Reactors .................... 215
6.1 REACTORS USED FOR CATALYTIC THREE-PHASE REACTIONS ...... 215
6.2 MASS BALANCES FOR THREE-PHASE REACTORS ................. 227
6.2.1 Mass Transfer and Chemical Reaction ............. 227
6.2.2 Three-Phase Reactors with a Plug Flow ........... 229
6.2.3 Three-Phase Reactor with Complete Backmixing .... 232
6.2.4 Semibatch and BRs ............................... 233
6.2.5 Parameters in Mass Balance Equations ............ 234
6.3 ENERGY BALANCES FOR THREE-PHASE REACTORS ............... 235
6.3.1 Three-Phase PFR ................................. 235
6.3.2 Tank Reactor with Complete Backmixing ........... 236
6.3.3 Batch Reactor ................................... 237
6.3.4 Analytical and Numerical Solutions of Balance
Equations for Three-Phase Reactors .............. 238
6.3.4.1 Sulfur Dioxide Oxidation ............... 238
6.3.4.2 Hydrogenation of Aromatics ............. 239
6.3.4.3 Carbonyl Group Hydrogenation ........... 242
REFERENCES .................................................. 244
Chapter 7 Gas-Liquid Reactors ............................... 247
7.1 REACTORS FOR NONCATALYTIC AND HOMOGENEOUSLY CATALYZED
REACTIONS .............................................. 247
7.2 MASS BALANCES FOR IDEAL GAS-LIQUID REACTORS ............ 256
7.2.1 Plug Flow Column Reactor ........................ 259
7.2.2 Tank Reactor with Complete Backmixing ........... 261
7.2.3 Batch Reactor ................................... 262
7.2.4 Fluxes in Gas and Liquid Films .................. 262
7.2.4.1 Very Slow Reactions .................... 266
7.2.4.2 Slow Reactions ......................... 267
7.2.4.3 Reactions with a Finite Velocity ....... 268
7.2.5 Fluxes in Reactor Mass Balances ................. 281
7.2.6 Design of Absorption Columns .................... 284
7.2.7 Gas and Liquid Film Coefficients, Diffusion
Coefficients, and Gas-Liquid Equilibria ......... 287
7.3 ENERGY BALANCES FOR GAS-LIQUID REACTORS ................ 289
7.3.1 Plug Flow Column Reactor ........................ 289
7.3.2 Tank Reactor with Complete Backmixing ........... 291
7.3.3 Batch Reactor ................................... 292
7.3.4 Coupling of Mass and Energy Balances ............ 293
7.3.5 Numerical Solution of Gas-Liquid Reactor
Balances ........................................ 293
REFERENCES .................................................. 295
Chapter 8 Reactors for Reactive Solids ...................... 297
8.1 REACTORS FOR PROCESSES WITH REACTIVE SOLIDS ............ 297
8.2 MODELS FOR REACTIVE SOLID PARTICLES .................... 300
8.2.1 Definitions ..................................... 300
8.2.2 Product Layer Model ............................. 304
8.2.2.1 First-Order Reactions .................. 309
8.2.2.2 General Reaction Kinetics: Diffusion
Resistance as the Rate-Determining
Step ................................... 312
8.2.3 Shrinking Particle Model ........................ 312
8.2.3.1 First-Order Reactions .................. 313
8.2.3.2 Arbitrary Reaction Kinetics:
Diffusion Resistance in the Gas Film
as the Rate-Determining Step ........... 316
8.3 MASS BALANCES FOR REACTORS CONTAINING A SOLID
REACTIVE PHASE ......................................... 316
8.3.1 Batch Reactor ................................... 316
8.3.1.1 Particles with a Porous Product
Layer .................................. 318
8.3.1.2 Shrinking Particles .................... 319
8.3.2 Semibatch Reactor ............................... 321
8.3.2.1 Particle with a Porous Product Layer .... 322
8.3.2.2 Shrinking Particle ...................... 322
8.3.3 Packed Bed ...................................... 322
REFERENCES .................................................. 325
Chapter 9 Toward New Reactor and Reaction Engineering ....... 327
9.1 HOW TO APPROACH THE MODELING OF NOVEL REACTOR
CONCEPTS? .............................................. 327
9.2 REACTOR STRUCTURES AND OPERATION MODES ................. 329
9.2.1 Reactors with Catalyst Packings ................. 329
9.2.1.1 Mass Balances for the Gas and Liquid
Bulk Phases ............................ 332
9.2.1.2 Interfacial Transport .................. 333
9.2.1.3 Mass Balances for the Catalyst
Particles .............................. 333
9.2.1.4 Numerical Solution of the Column
Reactor Model .......................... 334
9.2.1.5 Concluding Summary ..................... 336
9.2.2 Monolith Reactors ............................... 336
9.2.2.1 Flow Distribution from CFD
Calculations ........................... 338
9.2.2.2 Simplified Model for Reactive Flow ..... 340
9.2.2.3 Application: Catalytic Three-Phase
Hydrogenation of Citral in the
Monolith Reactor ....................... 341
9.2.3 Fiber Reactor ................................... 342
9.2.4 Membrane Reactor ................................ 344
9.2.5 Microreactor .................................... 346
9.3 TRANSIENT OPERATION MODES AND DYNAMIC MODELING ......... 349
9.3.1 Periodic Switching of Feed Composition .......... 351
9.3.2 Reverse Flow Reactors ........................... 352
9.4 NOVEL FORMS OF ENERGY AND REACTION MEDIA ............... 355
9.4.1 Ultrasound ...................................... 356
9.4.2 Microwaves ...................................... 359
9.4.3 Supercritical Fluids ............................ 362
9.4.3.1 Case: Hydrogenation of Triglycerides .... 362
9.4.4 Ionic Liquids ................................... 364
9.4.4.1 Case: Heterogenized ILs as Catalysts .... 365
9.5 EXPLORING REACTION ENGINEERING FOR NEW APPLICATIONS .... 366
9.5.1 Case Study: Delignification of Wood .............. 367
9.6 SUMMARY ................................................ 370
REFERENCES .................................................. 371
Chapter 10 Chemical Reaction Engineering: Historical
Remarks and Future Challenges .................... 373
10.1 CHEMICAL REACTION ENGINEERING AS A PART OF CHEMICAL
ENGINEERING ............................................ 373
10.2 EARLY ACHIEVEMENTS OF CHEMICAL ENGINEERING ............. 374
10.3 THE ROOTS OF CHEMICAL REACTION ENGINEERING ............. 375
10.4 UNDERSTANDING CONTINUOUS REACTORS AND TRANSPORT
PHENOMENA .............................................. 376
10.5 POSTWARTIME: NEWTHEORIES EMERGE ........................ 377
10.6 NUMERICAL MATHEMATICS AND COMPUTING DEVELOP ............ 378
10.7 TEACHING THE NEXT GENERATION ........................... 379
10.8 EXPANSION OF CHEMICAL REACTION ENGINEERING: TOWARD
NEW PARADIGMS .......................................... 380
FURTHER READING ............................................. 382
Chapter 11 Exercises ........................................ 383
Chapter 12 Solutions of Selected Exercises .................. 445
Appendix 1 Solutions of Algebraic Equation Systems .......... 535
Appendix 2 Solutions of ODEs ................................ 537
А2.1 SEMI-IMPLICIT RUNGE-KUTTA METHOD ................. 537
A2.2 LINEAR MULTISTEP METHODS ......................... 539
REFERENCES ............................................ 541
Appendix 3 Computer Code NLEODE ............................. 543
А3.1 SUBROUTINE FCN ................................... 544
А3.2 SUBROUTINE FCNJ .................................. 544
REFERENCES ............................................ 547
Appendix 4 Gas-Phase Diffusion Coefficients ................. 549
REFERENCE .............................................. 552
Appendix 5 Fluid-Film Coefficients .......................... 553
А5.1 GAS-SOLID COEFFICIENTS ........................... 553
A5.2 GAS-LIQUID AND LIQUID-SOLID COEFFICIENTS ......... 554
REFERENCES ............................................ 555
Appendix 6 Liquid-Phase Diffusion Coefficients .............. 557
A6.1 NEUTRAL MOLECULES ................................ 557
A6.2 IONS ............................................. 558
REFERENCES ............................................ 562
|