Salmi T. Chemical reaction engineering and reactor technology (Boca Raton, 2011). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаSalmi T. Chemical reaction engineering and reactor technology / T.Salmi, J.-P.Mikkola, J.Warna. - Boca Raton: CRC; London: Taylor & Francis, 2011. - xxxi, 615 p.: ill. - (Chemical industries; Vol.125). - Incl. bibl. ref. and indexes. - ISBN 978-1-4200-9268-4
 

Место хранения: 031 | Институт катализа им. Г.К.Борескова CO РАН | Новосибирск

Оглавление / Contents
 
Preface ..................................................... xix
Notations ................................................. xxiii

Chapter 1  Introduction ....................................... 1
1.1  PRELIMINARY STUDIES ...................................... 4
     1.1.1 Reaction Stoichiometry, Thermodynamics, and
           Synthesis Routes ................................... 4
1.2  LABORATORY EXPERIMENTS ................................... 4
1.3  ANALYSIS OF THE EXPERIMENTAL RESULTS ..................... 5
1.4  SIMULATION OF REACTOR MODELS ............................. 6
1.5  INSTALLATION OF A PILOT-PLANT UNIT ....................... 6
1.6  CONSTRUCTION OF THE FACILITY IN FULL SCALE ............... 6
REFERENCES .................................................... 7

Chapter 2  Stoichiometry and Kinetics ......................... 9
2.1  STOICHIOMETRIC MATRIX ................................... 10
2.2  REACTION KINETICS ....................................... 12
     2.2.1  Elementary Reactions ............................. 13
     2.2.2  Kinetics of Nonelementary Reactions: Quasi-
            Steady-State and Quasi-Equilibrium
            Approximations ................................... 16
            2.2.2.1  Ionic and Radical Intermediates ......... 18
            2.2.2.2  Catalytic Processes: Eley-Rideal
                     Mechanism ............................... 20
            2.2.2.3  Catalytic Processes: Langmuir-
                     Hinshelwood Mechanism ................... 24
REFERENCES ................................................... 25

Chapter 3 Homogeneous Reactors ............................... 27
3.1  REACTORS FOR HOMOGENEOUS REACTIONS ...................... 27
3.2  HOMOGENEOUS TUBE REACTOR WITH A PLUG FLOW ............... 34
     3.2.1  Mass Balance ..................................... 35
     3.2.2  Energy Balance ................................... 37
3.3  HOMOGENEOUS TANK REACTOR WITH PERFECT MIXING ............ 40
     3.3.1  Mass Balance ..................................... 40
     3.3.2  Energy Balance ................................... 41
3.4  HOMOGENEOUS BR .......................................... 44
     3.4.1  Mass Balance ..................................... 44
     3.4.2  Energy Balance ................................... 45
3.5  MOLAR AMOUNT, MOLE FRACTION, REACTION EXTENT,
     CONVERSION, AND CONCENTRATION ........................... 48
     3.5.1  Definitions ...................................... 48
     3.5.2  Relation between Molar Amount, Extent of
            Reaction, Conversion, and Molar Fraction ......... 51
            3.5.2.1  A System with a Single Chemical
                     Reaction ................................ 51
            3.5.2.2  A System with Multiple Chemical
                     Reactions ............................... 52
     3.5.3  Relationship between Concentration, Extent of
            Reaction, Conversion, and Volumetric Flow Rate
            in a Continuous Reactor .......................... 55
            3.5.3.1  Gas-Phase Reactions ..................... 55
            3.5.3.2  Liquid-Phase Reactions .................. 57
     3.5.4  Relationship between Concentration, Extent of
            Reaction, Conversion, and Total Pressure in a
            BR ............................................... 59
            3.5.4.1  Gas-Phase Reactions ..................... 59
            3.5.4.2  Liquid-Phase Reactions .................. 60
3.6  STOICHIOMETRY IN MASS BALANCES .......................... 61
3.7  EQUILIBRIUM REACTOR: ADIABATIC TEMPERATURE CHANGE ....... 66
     3.7.1 Mass and Energy Balances .......................... 66
3.8  ANALYTICAL SOLUTIONS FOR MASS AND ENERGY BALANCES ....... 68
     3.8.1 Multiple Reactions ................................ 71
            3.8.1.1  First-Order Parallel Reactions .......... 71
            3.8.1.2  Momentaneous and Integral Yield for
                     Parallel Reactions ...................... 76
            3.8.1.3  Reactor Selection and Operating
                     Conditions for Parallel Reactions ....... 78
            3.8.1.4  First-Order Consecutive Reactions ....... 80
            3.8.1.5  Consecutive-Competitive Reactions ....... 83
            3.8.1.6  Product Distributions in PFRs and BRs ... 84
            3.8.1.7  Product Distribution in a CSTR .......... 87
            3.8.1.8  Comparison of Ideal Reactors ............ 88
3.9 NUMERICAL SOLUTION OF MASS BALANCES FOR VARIOUS COUPLED
    REACTIONS ................................................ 89
REFERENCES ................................................... 92

Chapter 4 Nonideal Reactors: Residence Time Distributions .... 93
4.1  RESIDENCE TIME DISTRIBUTION IN FLOW REACTORS ............ 93
     4.1.1  Residence Time as a Concept ...................... 93
     4.1.2  Methods for Determining RTDs ..................... 96
            4.1.2.1  Volume Element .......................... 96
            4.1.2.2  Tracer Experiments ...................... 97
4.2  RESIDENCE TIME FUNCTIONS ................................ 97
     4.2.1  Population Density Function E(t) ................. 98
     4.2.2  Distribution Functions F(t) and F*(t) ........... 100
     4.2.3  Intensity Function λ(t) ......................... 101
     4.2.4  Mean Residence Time ............................. 101
     4.2.5  С Function ...................................... 102
     4.2.6  Dimensionless Time .............................. 102
     4.2.7  Variance ........................................ 103
     4.2.8  Experimental Determination of Residence Time
            Functions ....................................... 103
     4.2.9  RTD for a CSTR and PFR .......................... 106
     4.2.10 RTD in Tube Reactors with a Laminar Flow ........ 108
4.3  SEGREGATION AND MAXIMUM MIXEDNESS ...................... 113
     4.3.1  Segregation Model ............................... 113
     4.3.2  Maximum Mixedness Model ......................... 114
4.4  TANKS-IN-SERIES MODEL .................................. 115
     4.4.1  Residence Time Functions for the Tanks-in-
            Series Model .................................... 116
     4.4.2  Tanks in Series as a Chemical Reactor ........... 119
     4.4.3  Maximum-Mixed Tanks-in-Series Model ............. 120
     4.4.4  Segregated Tanks in Series ...................... 120
     4.4.5  Comparison of Tanks-in-Series Models ............ 121
     4.4.6  Existence of Micro- and Macrofluids ............. 121
4.5  AXIAL DISPERSION MODEL ................................. 123
     4.5.1  RTDs for the Axial Dispersion Model ............. 123
     4.5.2  Axial Dispersion Model as a Chemical Reactor .... 128
     4.5.3  Estimation of the Axial Dispersion
            Coefficient ..................................... 133
4.6  TUBE REACTOR WITH A LAMINAR FLOW ....................... 134
     4.6.1  Laminar Reactor without Radial Diffusion ........ 134
     4.6.2  Laminar Reactor with a Radial Diffusion: Axial
            Dispersion Model ................................ 137
REFERENCES .................................................. 139

Chapter 5  Catalytic Two-Phase Reactors ..................... 141
5.1  REACTORS FOR HETEROGENEOUS CATALYTIC GAS- AND LIQUID-
     PHASE REACTIONS ........................................ 143
5.2  PACKED BED ............................................. 156
     5.2.1  Mass Balances for the One-Dimensional Model ..... 160
     5.2.2  Effectiveness Factor ............................ 162
            5.2.2.1  Chemical Reaction and Diffusion
                     inside a Catalyst Particle ............. 162
            5.2.2.2  Spherical Particle ..................... 168
            5.2.2.3  Slab ................................... 172
            5.2.2.4  Asymptotic Effectiveness Factors for
                     Arbitrary Kinetics ..................... 174
            5.2.2.5  Nonisothermal Conditions ............... 180
     5.2.3  Energy Balances for the One-Dimensional Model ... 184
     5.2.4  Mass and Energy Balances for the Two-
            Dimensional Model ............................... 189
     5.2.5  Pressure Drop in Packed Beds .................... 198
5.3  FLUIDIZED BED .......................................... 199
     5.3.1  Mass Balances According to Ideal Models ......... 201
     5.3.2  Kunii-Levenspiel Model for Fluidized Beds ....... 202
            5.3.2.1 Kunii-Levenspiel Parameters ............. 206
5.4  PARAMETERS FOR PACKED BED AND FLUIDIZED BED REACTORS ... 210
REFERENCES .................................................. 212

Chapter 6 Catalytic Three-Phase Reactors .................... 215
6.1  REACTORS USED FOR CATALYTIC THREE-PHASE REACTIONS ...... 215
6.2  MASS BALANCES FOR THREE-PHASE REACTORS ................. 227
     6.2.1  Mass Transfer and Chemical Reaction ............. 227
     6.2.2  Three-Phase Reactors with a Plug Flow ........... 229
     6.2.3  Three-Phase Reactor with Complete Backmixing .... 232
     6.2.4  Semibatch and BRs ............................... 233
     6.2.5  Parameters in Mass Balance Equations ............ 234
6.3  ENERGY BALANCES FOR THREE-PHASE REACTORS ............... 235
     6.3.1  Three-Phase PFR ................................. 235
     6.3.2  Tank Reactor with Complete Backmixing ........... 236
     6.3.3  Batch Reactor ................................... 237
     6.3.4  Analytical and Numerical Solutions of Balance
            Equations for Three-Phase Reactors .............. 238
            6.3.4.1  Sulfur Dioxide Oxidation ............... 238
            6.3.4.2  Hydrogenation of Aromatics ............. 239
            6.3.4.3  Carbonyl Group Hydrogenation ........... 242
REFERENCES .................................................. 244

Chapter 7 Gas-Liquid Reactors ............................... 247
7.1  REACTORS FOR NONCATALYTIC AND HOMOGENEOUSLY CATALYZED
     REACTIONS .............................................. 247
7.2  MASS BALANCES FOR IDEAL GAS-LIQUID REACTORS ............ 256
     7.2.1  Plug Flow Column Reactor ........................ 259
     7.2.2  Tank Reactor with Complete Backmixing ........... 261
     7.2.3  Batch Reactor ................................... 262
     7.2.4  Fluxes in Gas and Liquid Films .................. 262
            7.2.4.1  Very Slow Reactions .................... 266
            7.2.4.2  Slow Reactions ......................... 267
            7.2.4.3  Reactions with a Finite Velocity ....... 268
     7.2.5  Fluxes in Reactor Mass Balances ................. 281
     7.2.6  Design of Absorption Columns .................... 284
     7.2.7  Gas and Liquid Film Coefficients, Diffusion
            Coefficients, and Gas-Liquid Equilibria ......... 287
7.3  ENERGY BALANCES FOR GAS-LIQUID REACTORS ................ 289
     7.3.1  Plug Flow Column Reactor ........................ 289
     7.3.2  Tank Reactor with Complete Backmixing ........... 291
     7.3.3  Batch Reactor ................................... 292
     7.3.4  Coupling of Mass and Energy Balances ............ 293
     7.3.5  Numerical Solution of Gas-Liquid Reactor
            Balances ........................................ 293
REFERENCES .................................................. 295

Chapter 8 Reactors for Reactive Solids ...................... 297
8.1  REACTORS FOR PROCESSES WITH REACTIVE SOLIDS ............ 297
8.2  MODELS FOR REACTIVE SOLID PARTICLES .................... 300
     8.2.1  Definitions ..................................... 300
     8.2.2  Product Layer Model ............................. 304
            8.2.2.1  First-Order Reactions .................. 309
            8.2.2.2  General Reaction Kinetics: Diffusion
                     Resistance as the Rate-Determining
                     Step ................................... 312
     8.2.3  Shrinking Particle Model ........................ 312
            8.2.3.1  First-Order Reactions .................. 313
            8.2.3.2  Arbitrary Reaction Kinetics:
                     Diffusion Resistance in the Gas Film
                     as the Rate-Determining Step ........... 316
8.3  MASS BALANCES FOR REACTORS CONTAINING A SOLID
     REACTIVE PHASE ......................................... 316
     8.3.1  Batch Reactor ................................... 316
            8.3.1.1  Particles with a Porous Product
                     Layer .................................. 318
            8.3.1.2  Shrinking Particles .................... 319
     8.3.2  Semibatch Reactor ............................... 321
            8.3.2.1 Particle with a Porous Product Layer .... 322
            8.3.2.2 Shrinking Particle ...................... 322
     8.3.3  Packed Bed ...................................... 322
REFERENCES .................................................. 325

Chapter 9 Toward New Reactor and Reaction Engineering ....... 327
9.1  HOW TO APPROACH THE MODELING OF NOVEL REACTOR
     CONCEPTS? .............................................. 327
9.2  REACTOR STRUCTURES AND OPERATION MODES ................. 329
     9.2.1  Reactors with Catalyst Packings ................. 329
            9.2.1.1  Mass Balances for the Gas and Liquid
                     Bulk Phases ............................ 332
            9.2.1.2  Interfacial Transport .................. 333
            9.2.1.3  Mass Balances for the Catalyst
                     Particles .............................. 333
            9.2.1.4  Numerical Solution of the Column
                     Reactor Model .......................... 334
            9.2.1.5  Concluding Summary ..................... 336
     9.2.2  Monolith Reactors ............................... 336
            9.2.2.1  Flow Distribution from CFD
                     Calculations ........................... 338
            9.2.2.2  Simplified Model for Reactive Flow ..... 340
            9.2.2.3  Application: Catalytic Three-Phase
                     Hydrogenation of Citral in the
                     Monolith Reactor ....................... 341
     9.2.3  Fiber Reactor ................................... 342
     9.2.4  Membrane Reactor ................................ 344
     9.2.5  Microreactor .................................... 346
9.3  TRANSIENT OPERATION MODES AND DYNAMIC MODELING ......... 349
     9.3.1  Periodic Switching of Feed Composition .......... 351
     9.3.2  Reverse Flow Reactors ........................... 352
9.4  NOVEL FORMS OF ENERGY AND REACTION MEDIA ............... 355
     9.4.1  Ultrasound ...................................... 356
     9.4.2  Microwaves ...................................... 359
     9.4.3  Supercritical Fluids ............................ 362
            9.4.3.1 Case: Hydrogenation of Triglycerides .... 362
     9.4.4  Ionic Liquids ................................... 364
            9.4.4.1 Case: Heterogenized ILs as Catalysts .... 365
9.5  EXPLORING REACTION ENGINEERING FOR NEW APPLICATIONS .... 366
     9.5.1 Case Study: Delignification of Wood .............. 367
9.6  SUMMARY ................................................ 370
REFERENCES .................................................. 371

Chapter 10 Chemical Reaction Engineering: Historical
           Remarks and Future Challenges .................... 373
10.1 CHEMICAL REACTION ENGINEERING AS A PART OF CHEMICAL
     ENGINEERING ............................................ 373
10.2 EARLY ACHIEVEMENTS OF CHEMICAL ENGINEERING ............. 374
10.3 THE ROOTS OF CHEMICAL REACTION ENGINEERING ............. 375
10.4 UNDERSTANDING CONTINUOUS REACTORS AND TRANSPORT
     PHENOMENA .............................................. 376
10.5 POSTWARTIME: NEWTHEORIES EMERGE ........................ 377
10.6 NUMERICAL MATHEMATICS AND COMPUTING DEVELOP ............ 378
10.7 TEACHING THE NEXT GENERATION ........................... 379
10.8 EXPANSION OF CHEMICAL REACTION ENGINEERING: TOWARD
     NEW PARADIGMS .......................................... 380
FURTHER READING ............................................. 382

Chapter 11 Exercises ........................................ 383

Chapter 12 Solutions of Selected Exercises .................. 445

Appendix 1 Solutions of Algebraic Equation Systems .......... 535
Appendix 2 Solutions of ODEs ................................ 537
      А2.1 SEMI-IMPLICIT RUNGE-KUTTA METHOD ................. 537
      A2.2 LINEAR MULTISTEP METHODS ......................... 539
      REFERENCES ............................................ 541
Appendix 3 Computer Code NLEODE ............................. 543
      А3.1 SUBROUTINE FCN ................................... 544
      А3.2 SUBROUTINE FCNJ .................................. 544
      REFERENCES ............................................ 547
Appendix 4 Gas-Phase Diffusion Coefficients ................. 549
     REFERENCE .............................................. 552
Appendix 5 Fluid-Film Coefficients .......................... 553
      А5.1 GAS-SOLID COEFFICIENTS ........................... 553
      A5.2 GAS-LIQUID AND LIQUID-SOLID COEFFICIENTS ......... 554
      REFERENCES ............................................ 555
Appendix 6 Liquid-Phase Diffusion Coefficients .............. 557
      A6.1 NEUTRAL MOLECULES ................................ 557
      A6.2 IONS ............................................. 558
      REFERENCES ............................................ 562


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:22:24 2019. Размер: 21,925 bytes.
Посещение N 1888 c 12.07.2011