Li S. Introduction to micromechanics and nanomechanics (Singapore; Hackensack, 2008). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаLi S. Introduction to micromechanics and nanomechanics / S.Li, G.Wang. - Singapore; Hackensack: World Scientific, 2008. - xiv, 500 p.: ill. (some col.). - Bibliogr.: p.481-494. - Sub. ind.: p.495-497. - Auth. ind.: p.499-500. - ISBN-10 981-281-414-0; ISBN-13 978-981-281-414-2
 

Оглавление / Contents
 
Preface ....................................................... vii

1  INTRODUCTION ................................................. 1
   1.1  What are micromechanics and nanomechanics? .............. 1
   1.2  Vectors and tensors ..................................... 4
        1.2.1  Vector algebra ................................... 4
        1.2.2  Tensor algebra ................................... 6
        1.2.3  Inversion formula for fourth-order isotropic
               tensor ........................................... 9
        1.2.4  Tensor analysis  ................................ 11
   1.3  Review of linear elasticity theory ..................... 13
        1.3.1  Governing equations ............................. 13
        1.3.2  Betti's reciprocal theorem and the Somigliana
               identity ........................................ 15
   1.4  Review of finite elasticity ............................ 18
   1.5  Review of molecular dynamics ........................... 20
        1.5.1  Lagrangian equations of motion .................. 20
        1.5.2  Hamiltonian equations of motion ................. 22
        1.5.3  Interatomic potentials .......................... 24
        1.5.4  Two-body (pair) potentials ...................... 24
        1.5.5  Embedded-Atom-Method (EAM) ...................... 27
   1.6  Elements of lattice dynamics ........................... 29
        1.6.1  Crystal lattice structures ...................... 29
        1.6.2  Crystallographic system ......................... 32
        1.6.3  Lattice dynamics ................................ 35
   1.7  Exercises .............................................. 37
2  GREEN'S FUNCTION AND FOURIER TRANSFORM ...................... 39
   2.1  Basics of Green's function ............................. 39
   2.2  Fourier transform ...................................... 42
   2.3  Examples of Green's functions .......................... 47
   2.4  Static Green's function for 3D linear elasticity ....... 50
   2.5  Green's function for Stokes equations .................. 56
   2.6  Radon transform ........................................ 58
   2.7  Green's function for elastodynamics .................... 62
   2.8  Lattice statics Green's function (LSGF) ................ 65
        2.8.1 Maradudin's solution for the screw dislocation ... 66
   2.9  Exercises .............................................. 70
3  MICROMECHANICAL HOMOGENIZATION THEORY ....................... 73
   3.1  Ergodicity principle and representative volume
        element (RVE) .......................................... 74
        3.1.1  Ergodic principle ............................... 75
        3.1.2  Representative volume element ................... 78
   3.2  Average field in an RVE ................................ 80
   3.3  Definition of eigenstrain, eigenstress, and
        inclusion .............................................. 86
   3.4  Eshelby's equivalent eigenstrain method ................ 86
   3.5  Fundamental equations of micro-elasticity .............. 89
        3.5.1  Method of Fourier transform ..................... 90
        3.5.2  Method of Green's function ...................... 91
   3.6  Eshelby's solution to the inclusion problem in an
        infinite space ......................................... 94
        3.6.1  Interior solution of ellipsoidal inclusion ...... 95
        3.6.2  Eshelby's conjectures ........................... 99
        3.6.3  Exterior solution of ellipsoidal inclusion ..... 102
        3.6.4  The second derivatives of Green's function
               and the Eshelby tensors ........................ 106
   3.7  Applications of eigenstrain theory .................... 108
        3.7.1  Strain field in embedded quantum dots .......... 108
        3.7.2  Dislocation problems ........................... 112
        3.7.3  Stress intensity factor for a flat
               ellipsoidal crack .............................. 115
   3.8  John Douglas Eshelby (1916-1981) ...................... 121
   3.9  Exercises ............................................. 125
4  EFFECTIVE ELASTIC MODULUS .................................. 131
   4.1  Effective modulus for composites with dilute
        suspension phases ..................................... 131
        4.1.1  Basic equations for average stress and
               strain ......................................... 131
        4.1.2  Homogenization: equivalent stress/strain
               conditions ..................................... 133
        4.1.3  Example: elastic modulus of isotropic
               composites ..................................... 136
   4.2  Self-consistent method ................................ 138
   4.3  Mori-Tanaka method .................................... 143
        4.3.1  Tanaka-Mori lemma .............................. 143
        4.3.2  Mori-Tanaka's mean field theory ................ 146
   4.4  Rodney Hill ........................................... 151
   4.5  Exercises ............................................. 156
5  COMPARISON VARIATIONAL PRINCIPLES .......................... 159
   5.1  Review of variational calculus ........................ 159
   5.2  Extremum variational principles in linear
        elasticity ............................................ 163
        5.2.1  Minimum potential energy principle ............. 163
        5.2.2  Minimum complementary potential energy
               principle ...................................... 166
        5.2.3  Voigt bound and Ruess bound .................... 168
   5.3  Hashin-Shtrikman variational principles ............... 170
   5.4  Hashin-Shtrikman bounds ............................... 176
   5.5  Review of functional analysis and convex analysis ..... 186
        5.5.1  Concept of convexity ........................... 191
        5.5.2  Gateaux variation and convex functional ........ 193
        5.5.3  Primal variational problems .................... 195
   5.6  Legendre transformation and duality ................... 196
   5.7  Legendre-Fenchel transformation in linear
        elasticity ............................................ 203
   5.8  Talbot-Willis variational principles .................. 204
   5.9  Ponte Castaneda variational principle ................. 207
        5.9.1  Effective property and nonlinear potential ..... 207
        5.9.2  Variational method based on a linear
               comparison solid ............................... 210
   5.10 Zvi Hashin ............................................ 212
   5.11 Exercises ............................................. 212
6  ESHELBY TENSORS IN A FINITE VOLUME AND THEIR
   APPLICATIONS ............................................... 217
   6.1  Introduction .......................................... 217
   6.2  The inclusion problem of a finite RVE ................. 218
   6.3  Properties of the radially isotropic tensor ........... 221
   6.4  Eshelby tensors for finite domains .................... 224
        6.4.1  Dirichlet-Eshelby tensor ....................... 225
        6.4.2  Neumann-Eshelby tensor ......................... 229
   6.5  Average Eshelby tensors and average disturbance
        fields ................................................ 233
        6.5.1  Average Eshelby tensors ........................ 234
        6.5.2  Average disturbance fields ..................... 236
   6.6  Improvements of classical homogenization methods ...... 237
        6.6.1  Dilute suspension model ........................ 237
        6.6.2  A refined Mori-Tanaka model .................... 238
        6.6.3  Multiphase variational bounds .................. 241
   6.7  Application to multiscale finite element methods ...... 251
        6.7.1  Variational multiscale eigenstrain
               formulation .................................... 251
        6.7.2  Modal analysis of the modified smart element ... 258
        6.7.3  Numerical examples ............................. 260
   6.8  Exercises ............................................. 264
7  INTRODUCTION TO MICROMECHANICS AND NANOMECHANICS
   MICROMECHANICAL DAMAGE THEORY .............................. 265
   7.1  Spherical void growth in linear viscous solids ........ 265
   7.2  McClintock solution to cylindrical void growth
        problem ............................................... 267
   7.3  Gurson model .......................................... 273
   7.4  Gurson-Tvergaard-Needleman (GTN) model ................ 278
   7.5  A cohesive micro-crack damage model ................... 281
        7.5.1  Average theorem for a cohesive RVE ............. 282
        7.5.2  Penny-shaped cohesive crack under uniform
               triaxial tension ............................... 283
        7.5.3  Effective elastic material properties of an
               RVE ............................................ 287
        7.5.4  Micro-cohesive-crack damage models ............. 291
   7.6  Frank A. McClintock ................................... 293
   7.7  Exercises ............................................. 293
8  INTRODUCTION OF DISLOCATION THEORY ......................... 297
   8.1  Screw dislocation ..................................... 297
        8.1.1  The solution of a screw dislocation ............ 298
        8.1.2  Image stress of a screw dislocation in a half
               space .......................................... 301
        8.1.3  Eshelby's twist: screw dislocation in
               a finite whisker ............................... 302
   8.2  Edge dislocation ...................................... 303
        8.2.1  Image stress for an edge dislocation ........... 306
   8.3  Peach-Koehler force ................................... 308
   8.4  Point defects ......................................... 313
        8.4.1  Displacement field induced by a point defect ... 314
        8.4.2  Formation volume tensor ........................ 315
   8.5  Continuum theory of dislocation ....................... 317
        8.5.1  Volterra and Mura's formulas ................... 317
        8.5.2  The Burgers formula ............................ 320
        8.5.3  Peach-Koehler stress formula for dislocation
               loop ........................................... 323
   8.6  Discrete dislocation dynamics (DDD) ................... 325
        8.6.1  Galerkin weak form formulation ................. 325
        8.6.2  Finite element implementation .................. 327
   8.7  Peierls-Nabarro model ................................. 329
        8.7.1  Hilbert transform .............................. 330
        8.7.2  Peierls-Nabarro dislocation model .............. 331
        8.7.3  Misfit energy and the Peierls force ............ 335
        8.7.4  Variable core model ............................ 341
        8.7.5  Story of the Peierls-Nabarro model ............. 344
   8.8  Dislocations in epitaxial thin films .................. 346
        8.8.1  Frenkel & Kontorova and Frank & van der Merwe
               models ......................................... 346
        8.8.2  Matthews & Blackeslee's equilibrium theory ..... 353
        8.8.3  Mobility of screw dislocations in a thin
               film ........................................... 355
   8.9  Exercises ............................................. 360
9  INTRODUCTION TO CONFIGURATIONAL MECHANICS .................. 363
   9.1  Configurational force: Eshelby's energy-momentum
        tensor ................................................ 363
        9.1.1  Eshelby's thought experiment ................... 364
        9.1.2  Lessons from J.D. Eshelby ...................... 371
        9.1.3  J-integral and energy release rate G ........... 373
   9.2  James R. Rice ......................................... 375
   9.3  Configurational compatibility ......................... 376
        9.3.1  Continuum dislocation theory ................... 376
        9.3.2  Continuum disclination theory .................. 379
        9.3.3  Re-combination I: The generalized Nye theory ... 380
        9.3.4  Re-combination II: The Kröner-deWit theory ..... 381
        9.3.5  Compatibility conservation laws ................ 381
   9.4  Multiscale energy-momentum tensor ..................... 384
   9.5  Ekkehart Kroner (1919-2000) ........................... 391
   9.6  Exercises ............................................. 391
10 SMALL SCALE COARSE-GRAINED MODELS .......................... 393
   10.1 Gurtin-Murdoch surface elasticity model ............... 393
        10.1.1  Projection operator ........................... 393
        10.1.2  Gurtin-Murdoch theory ......................... 396
        10.1.3  Spherical inclusion problem ................... 397
   10.2 Cohesive quasi-continuum finite element method ........ 399
        10.2.1  Atomistic modeling ............................ 400
        10.2.2  Quasi-continuum method ........................ 401
        10.2.3  Interface Cauchy-Born rule .................... 404
   10.3 Microscale or mesoscale stress ........................ 412
        10.3.1  Virial stress ................................. 412
        10.3.2  Hardy stress .................................. 415
   10.4 Exercises ............................................. 418
11 PERIODIC MICROSTRUCTURE AND ASYMPTOTIC HOMOGENIZATION ...... 419
   11.1 Unit cell and Fourier series .......................... 419
        11.1.1 Fourier transform of displacement field and
               strain field ................................... 421
        11.1.2 Fourier series transform of stress field ....... 422
   11.2 Eigenstrain homogenization ............................ 423
   11.3 Introduction to asymptotic homogenization ............. 431
        11.3.1 One-dimensional model problem .................. 431
        11.3.2 A multiple dimension example ................... 436
   11.4 Variational characterization .......................... 444
   11.5 Multiscale finite element method ...................... 447
        11.5.1 Asymptotic homogenization of linear
               elasticity ..................................... 448
        11.5.2 Finite element formulation ..................... 451
   11.6 G-, H-, and Г- Convergence ............................ 454
        11.6.1 Strong convergence and weak convergence ........ 454
        11.6.2 G-convergence .................................. 457
        11.6.3 H-convergence .................................. 462
        11.6.4 Г-convergence .................................. 462
   11.7 Toshia Mura ........................................... 463
   11.8 Exercises ............................................. 464

Appendix A Appendix of Chapter 6 .............................. 467
     A.l Integration formulas ................................. 467
     A.2 Table of Eshelby tensor coefficients for
         three-layer shell model .............................. 470
     A.3 Finite Eshelby tensors for circular inclusion ........ 472
Appendix В Noether's Theorems ................................. 475
     B.l Noether's theorem for a vector field ................. 475
     B.2 Noether's theorem for a tensorial field .............. 476

Bibliography .................................................. 481

SUBJECT INDEX ................................................. 495

AUTHORS INDEX ................................................. 499


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:22:22 2019. Размер: 19,606 bytes.
Посещение N 1882 c 21.06.2011