Schowengerdt R.A. Remote sensing: models and methods for image processing (Amsterdam: Elsevier; Burlington, 2007). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаSchowengerdt R.A. Remote sensing: models and methods for image processing. - 3rd ed. - Amsterdam: Elsevier; Burlington: Academic Press, 2007. - xli, 515 p., [32] p. of plates ill. (some col.). - ISBN-10 0123694078; ISBN-13 9780123694072
 

Оглавление / Contents
 
Figures ...................................................... xvii
Tables
Preface to the Third Edition ............................... xxxvii
Preface to the Second Edition .............................. xxxvii

CHAPTER 1 The Nature of Remote Sensing .......................... 1
1.1  Introduction ............................................... 1
1.2  Remote Sensing ............................................. 2
     1.2.1  Information Extraction from Remote-Sensing Images ... 7
     1.2.2  Spectral Factors in Remote Sensing .................. 8
1.3  Spectral Signatures ....................................... 13
1.4  Remote-Sensing Systems .................................... 16
     1.4.1  Spatial and Radiometric Characteristics ............ 16
     1.4.2  Spectral Characteristics ........................... 30
     1.4.3  Temporal Characteristics ........................... 32
     1.4.4  Multi-Sensor Formation Flying ...................... 35
1.5  Image Display Systems ..................................... 36
1.6  Data Systems .............................................. 39
1.7  Summary ................................................... 42
1.8  Exercises ................................................. 44

CHAPTER 2 Optical Radiation Models ............................. 45
2.1 Introduction ............................................... 45
2.2  Visible to Shortwave Infrared Region ...................... 46
     2.2.1  Solar Radiation .................................... 46
     2.2.2  Radiation Components ............................... 47
            Surface-reflected, unscattered component ........... 48
            Surface-reflected, atmosphere-scattered
            component .......................................... 53
            Path-scattered component ........................... 54
            Total at-sensor, solar radiance .................... 55
     2.2.3  Image Examples in the Solar Region ................. 58
            Terrain shading .................................... 58
            Shadowing .......................................... 58
            Atmospheric correction ............................. 61
2.3  Midwave to Thermal Infrared Region ........................ 61
     2.3.1  Thermal Radiation .................................. 61
     2.3.2  Radiation Components ............................... 63
            Surface-emitted component .......................... 64
            Surface-reflected, atmosphere-emitted component .... 66
            Path-emitted component ............................. 67
            Total at-sensor, emitted radiance .................. 68
     2.3.3  Total Solar and Thermal Upwelling Radiance ......... 68
     2.3.4  Image Examples in the Thermal Region ............... 69
2.4  Summary ................................................... 72
2.5  Exercises ................................................. 73

CHAPTER 3 Sensor Models ........................................ 75
3.1  Introduction .............................................. 75
3.2  Overall Sensor Model ...................................... 76
3.3  Resolution ................................................ 76
     3.3.1  The Instrument Response ............................ 77
     3.3.2  Spatial Resolution ................................. 77
     3.3.3  Spectral Resolution ................................ 82
3.4  Spatial Response .......................................... 85
     3.4.1  Optical PSFopt ...................................... 86
     3.4.2  Detector PSFdet .................................... 88
     3.4.3  Image Motion PSFIM ................................. 88
     3.4.4  Electronics PSFel .................................. 90
     3.4.5  Net PSFnet ......................................... 90
     3.4.6  Comparison of Sensor PSFs .......................... 90
     3.4.7  Imaging System Simulation .......................... 91
     3.4.8  Measuring the PSF .................................. 95
            ALI LSF measurement ................................ 98
            QuickBird LSF measurement ......................... 101
3.5  Spectral Response ........................................ 104
3.6  Signal Amplification ..................................... 106
3.7  Sampling and Quantization ................................ 107
3.8  Simplified Sensor Model .................................. 109
3.9  Geometric Distortion ..................................... 110
     3.9.1  Sensor Location Models ............................ 110
     3.9.2  Sensor Attitude Models ............................ 110
     3.9.3  Scanner Models .................................... 113
     3.9.4  Earth Model ....................................... 114
     3.9.5  Line and Whiskbroom Scan Geometry ................. 119
     3.9.6  Pushbroom Scan Geometry ........................... 119
     3.9.7  Topographic Distortion ............................ 121
3.10 Summary .................................................. 125
3.11 Exercises ................................................ 125

CHAPTER 4 Data Models ......................................... 727
4.1  Introduction ............................................. 127
4.2  A Word on Notation ....................................... 128
4.3  Univariate Image Statistics .............................. 128
     4.3.1  Histogram ......................................... 129
            Normal distribution ............................... 130
     4.3.2  Cumulative Histogram .............................. 131
     4.3.3  Statistical Parameters ............................ 131
4.4  Multivariate Image Statistics ............................ 133
     4.4.1 Reduction to Univariate Statistics ................. 140
4.5  Noise Models ............................................. 140
     4.5.1  Statistical Measures of Image Quality ............. 146
            Contrast .......................................... 146
            Modulation ........................................ 146
            Signal-to-Noise Ratio (SNR) ....................... 147
            National Imagery Interpretability Scale (NIIRS) ... 149
     4.5.2  Noise Equivalent Signal ........................... 152
4.6  Spatial Statistics ....................................... 152
     4.6.1  Visualization of Spatial Covariance ............... 153
     4.6.2  Covariance and Semivariogram ...................... 153
            Separability and anisotropy ....................... 160
     4.6.3  Power Spectral Density ............................ 162
     4.6.4  Co-Occurrence Matrix .............................. 164
     4.6.5  Fractal Geometry .................................. 166
4.7  Topographic and Sensor Effects ........................... 169
     4.7.1  Topography and Spectral Scattergrams .............. 169
     4.7.2  Sensor Characteristics and Spatial Statistics ..... 174
     4.7.3  Sensor Characteristics and Spectral
            Scattergrams ...................................... 178
4.8  Summary .................................................. 181
4.9  Exercises ................................................ 182

CHAPTER 5 Spectral Transforms ................................. 183
5.1  Introduction ............................................. 183
5.2  Feature Space ............................................ 184
5.3  Multispectral Ratios ..................................... 186
     5.3.1  Vegetation Indexes ................................ 188
     5.3.2  Image Examples .................................... 191
5.4  Principal Components ..................................... 193
     5.4.1  Standardized Principal Components (SPC) ........... 199
     5.4.2  Maximum Noise Fraction (MNF) ...................... 199
5.5  Tasseled-Cap Components .................................. 202
5.6  Contrast Enhancement ..................................... 206
     5.6.1  Global Transforms ................................. 208
            Linear stretch .................................... 209
            Nonlinear stretch ................................. 209
            Normalization stretch ............................. 210
            Reference stretch ................................. 210
            Thresholding ...................................... 216
     5.6.2  Local Transforms .................................. 217
     5.6.3  Color Images ...................................... 219
            Min-max stretch ................................... 221
            Normalization stretch ............................. 221
            Reference stretch ................................. 221
            Decorrelation stretch ............................. 222
            Color-space transforms ............................ 223
            Spatial domain blending ........................... 224
5.7  Summary .................................................. 227
5.8  Exercises ................................................ 227

CHAPTER 6 Spatial Transforms .................................. 229
6.1  Introduction ............................................. 229
6.2  An Image Model for Spatial Filtering ..................... 230
6.3  Convolution Filters ...................................... 230
     6.3.1  Linear Filters .................................... 232
            Convolution ....................................... 232
            Low-pass and high-pass filters (LPF, HPF) ........  233
            High-boost filters (HBF) .......................... 234
            Band-pass filters (BPF) ........................... 235
            Directional filters ............................... 236
            The border region ................................. 237
            Characteristics of filtered images ................ 239
            Application of the blending algorithm to spatial
            filtering ......................................... 239
            The box-filter algorithm .......................... 240
            Cascaded linear filters ........................... 241
     6.3.2  Statistical Filters ............................... 242
            Morphological filters ............................. 244
     6.3.3  Gradient Filters .................................. 245
6.4  Fourier Transforms ....................................... 246
     6.4.1  Fourier Analysis and Synthesis .................... 246
     6.4.2  Discrete Fourier Transforms in 2-D ................ 249
     6.4.3  The Fourier Components ............................ 253
     6.4.4  Filtering with the Fourier Transform .............. 255
            Transfer functions ................................ 257
     6.4.5  System Modeling Using the Fourier Transform ....... 259
     6.4.6  The Power Spectrum ................................ 263
6.5  Scale-Space Transforms ................................... 263
     6.5.1  Image Resolution Pyramids ......................... 265
     6.5.2  Zero-Crossing Filters ............................. 267
            Laplacian-of-Gaussian (LoG) filters ............... 269
            Difference-of-Gaussians (DoG) filters ............. 274
     6.5.3  Wavelet Transforms ................................ 278
6.6  Summary .................................................. 282
6.7  Exercises ................................................ 282

CHAPTER 7 Correction and Calibration .......................... 285
7.1  Introduction ............................................. 285
7.2  Distortion Correction .................................... 286
     7.2.1  Polynomial Distortion Models ...................... 287
            Ground Control Points (GCPs) ...................... 291
     7.2.2  Coordinate Transformation ......................... 298
            Map projections ................................... 299
     7.2.3  Resampling ........................................ 300
7.3  Sensor MTF Compensation .................................. 309
     7.3.1 Examples of MTF compensation ....................... 311
7.4  Noise Reduction .......................................... 315
     7.4.1  Global Noise ...................................... 315
            Sigma filter ...................................... 315
            Nagao-Matsuyama filter ............................ 317
     7.4.2  Local Noise ....................................... 318
            Detection by spectral correlation ................. 318
     7.4.3  Periodic Noise .................................... 320
     7.4.4  Detector Striping ................................. 323
            Global, linear detector matching .................. 325
            Nonlinear detector matching ....................... 325
            Statistical modification .......................... 325
            Spatial filter masking ............................ 327
            Debanding ......................................... 328
7.5  Radiometric Calibration .................................. 332
     7.5.1  Multispectral Sensors and Imagery ................. 334
            Sensor calibration ................................ 334
            Atmospheric correction ............................ 337
            Solar and topographic correction .................. 339
            Image examples .................................... 340
     7.5.2  Hyperspectral Sensors and Imagery ................. 341
            Sensor calibration ................................ 341
            Atmospheric correction ............................ 343
            Normalization techniques .......................... 344
            Image examples .................................... 350
7.6  Summary .................................................. 352
7.7  Exercises ................................................ 353

CHAPTER 8 Registration and Fusion ............................. 355
8.1  Introduction ............................................. 355
8.2  What Is Registration? .................................... 356
8.3  Automated GCP Location ................................... 357
     8.3.1  Area Correlation .................................. 357
            Relation to spatial statistics .................... 362
     8.3.2  Other Spatial Features for Registration ........... 362
8.4  Orthorectification ....................................... 363
     8.4.1  Low-Resolution DEM ................................ 363
     8.4.2  High-Resolution DEM ............................... 364
            Hierarchical warp stereo .......................... 366
8.5  Multi-Image Fusion ....................................... 371
     8.5.1  Feature Space Fusion .............................. 374
     8.5.2  Spatial Domain Fusion ............................. 375
            High frequency modulation ......................... 376
            Filter design for HFM ............................. 378
            Sharpening with a sensor model .................... 378
     8.5.3  Scale-Space Fusion ................................ 380
     8.5.4  Image Fusion Examples ............................. 380
8.6  Summary .................................................. 384
8.7  Exercises ................................................ 384

CHAPTER 9 Thematic Classification ............................. 387
9.1  Introduction ............................................. 387
9.2  The Classification Process ............................... 388
     9.2.1  The Importance of Image Scale and Resolution ...... 390
     9.2.2  The Notion of Similarity .......................... 391
     9.2.3  Hard Versus Soft Classification ................... 393
9.3  Feature Extraction ....................................... 395
9.4  Training the Classifier .................................. 395
     9.4.1  Supervised Training ............................... 396
            Separability analysis ............................. 396
     9.4.2  Unsupervised Training ............................. 399
            K-means clustering algorithm ...................... 400
            Clustering examples ............................... 400
     9.4.3  Hybrid Supervised/Unsupervised Training ........... 402
9.5  Nonparametric Classification ............................. 405
     9.5.1  Level-Slice Classifier ............................ 405
     9.5.2  Histogram Estimation Classifier ................... 406
     9.5.3  Nearest-Neighbors Classifier ...................... 407
     9.5.4  Artificial Neural Network (ANN) Classifier ........ 407
            Back-propagation algorithm ........................ 409
     9.5.5  Nonparametric Classification Examples ............. 413
9.6  Parametric Classification ................................ 417
     9.6.1  Estimation of Model Parameters .................... 417
     9.6.2  Discriminant Functions ............................ 418
     9.6.3  The Normal Distribution Model ..................... 418
     9.6.4  The Nearest-Mean Classifier ....................... 421
     9.6.5  Parametric Classification Examples ................ 422
9.7  Spatial-Spectral Segmentation ............................ 427
     9.7.1 Region Growing ..................................... 427
9.8  Subpixel Classification .................................. 430
     9.8.1  The Linear Mixing Model ........................... 434
            Unmixing examples ................................. 437
            Relation of fractions to neural network output .... 440
            Endmember specification ........................... 441
     9.8.2  Fuzzy Set Classification .......................... 442
            Fuzzy C-Means (FCM) clustering .................... 442
            Fuzzy supervised classification ................... 443
9.9  Hyperspectral Image Analysis ............................. 445
     9.9.1  Visualization of the Image Cube ................... 445
     9.9.2  Training for Classification ....................... 447
     9.9.3  Feature Extraction from Hyperspectral Data ........ 447
            Image residuals ................................... 447
            Absorption-band parameters ........................ 448
            Spectral derivative ratios ........................ 448
            Spectral fingerprints ............................. 449
     9.9.4  Classification Algorithms for Hyperspectral
            Data .............................................. 450
            Binary encoding ................................... 452
            Spectral-angle mapping ............................ 452
            Orthogonal Subspace Projection (OSP) .............. 454
9.10 Summary .................................................. 455
9.11 Exercises ................................................ 456

APPENDIX A Sensor Acronyms .................................... 457
APPENDIX В 1-D and 2-D Functions .............................. 461

References .................................................... 467

Index ......................................................... 509


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:22:16 2019. Размер: 23,246 bytes.
Посещение N 2357 c 07.06.2011