Preface ......................................................... v
Chapter 1. Anamorphic beam shaping for laser and diffuse
light Nir Davidson (Rehovot, Israel) and Nándor
Bokor (Budapest, Hungary) ............................ 1
§1. Introduction ................................................ 3
1.1. Diffuse light and its phase-space representation ....... 3
1.2. Anamorphic beam shaping ................................ 6
§2. Reflective techniques ....................................... 7
2.1. The two-mirror method .................................. 7
2.2. The micro step-mirror technique ....................... 11
2.3. The microprism-array technique ........................ 14
§3. Refractive/diffractive techniques .......................... 20
3.1. The Fourier transform technique ....................... 21
3.2. The modified Fourier transform technique .............. 24
3.3. The tilted cylindrical lens method .................... 26
3.4. The method of two grating arrays ...................... 32
3.5. The method of stacked glass plates .................... 34
§4. Adiabatic techniques ....................................... 36
4.1. The stubbed-waveguide technique ....................... 37
4.2. The fiber-bundle method .............................. 39
4.3. The method of tapered reflecting tubes ................ 40
§5. Applications ............................................... 44
5.1. High-power laser-diode bars applied for end pumping
of solid-state lasers ................................. 44
5.2. One-dimensional concentration of solar radiation ...... 47
5.3. High-resolution spectrometry and optical metrology .... 48
§6. Summary .................................................... 50
References ................................................. 50
Chapter 2. Ultra-fast all-optical switching in optical
networks, Ivan Glesk, Bing C. Wang, Lei Xu,
Varghese Baby and Paul R. Prucnal (Princeton, NJ,
USA) ................................................ 53
§1. Introduction ............................................... 55
1.1. Dense wavelength-division multiplexing (DWDM) ......... 56
1.2. Optical time-division multiplexing (OTDM) ............. 59
§2. Use of nonlinearities in an optical fiber for all-optical
switching .................................................. 61
2.1. All-optical switches based on four-wave mixing
(FWM) ................................................. 61
2.2. All-optical switches based on cross-phase modulation
(XPM) ................................................. 65
2.3. Nonlinear loop mirror (NOLM) as an all-optical
switch ................................................ 65
2.3.1. Sagnac interferometer (fiber-loop mirror) ...... 65
2.3.2. Nonlinear optical loop mirror (NOLM) ........... 67
2.3.3. Switching characteristics of NOLM .............. 69
§3. Interferometric SOA-based all-optical switches ............. 71
3.1. Gain dynamics in SOA .................................. 72
3.2. All-optical switches based on NOLM with built-in
SOA: SLALOM and TOAD .................................. 74
3.2.1. Working principles of TOAD ..................... 76
3.2.2. Working characteristics of TOAD ................ 78
3.3. SOA-based Mach-Zehnder all-optical switch
geometries ............................................ 79
3.4. Experimental demonstrations of the TOAD and the
Mach-Zehnder-based all-optical switches ............... 81
3.5. Cascaded TOAD all-optical switch ...................... 84
3.6. The Ultra-fast Nonlinear Interferometer (UNI) all-
optical switch ........................................ 87
3.7. Gain-transparent SOA-based all-optical switch ......... 89
3.8. Performance enhancement of SOA-based all-optical
interferometric switches and their integration on
a single chip ......................................... 92
3.8.1. Reduction of SOA recovery time ................. 92
3.8.2. Towards an integrated all-optical switch ....... 92
§4. All-optical switches based on passive waveguides ........... 93
§5. Demonstrations of all-optical switching in networks ........ 94
5.1. Demonstrations of all-optical clock extraction in
self-clocking OTDM network ............................ 96
5.1.1. Clock/data separation using all-optical
thresholder in self-clocked OTDM system ........ 96
5.1.2. Ultra-fast all-optical thresholder ............. 97
5.2. All-optical demultiplexing and packet routing using
TOAD switches ........................................ 100
5.3. Demonstration of GT-SOA switch in hybrid WDM/OTDM
system ............................................... 103
5.4. High-speed OTDM-based interconnect ................... 105
5.5. Demonstration of photonic packet switching in
shufflenet network ................................... 108
§6. Conclusion ................................................ 111
References ................................................ 114
Chapter 3. Generation of dark hollow beams and their
applications, Jianping Yin (Shanghai, China),
Weijian Gao (Suzhou, China) and Yifu Zhu (Miami,
FL, USA) ........................................... 119
§1. Introduction .............................................. 121
§2. Definition of a dark hollow beam and its parameters ....... 122
§3. Generation of dark hollow beams ........................... 123
3.1. Transverse-mode selection ............................ 124
3.2. Geometric optical method ............................. 126
3.2.1. Generation of ring-shaped hollow beams ........ 126
3.2.2. Generation of high-order Bessel beams ......... 129
3.2.3. Generation of localized hollow beams .......... 131
3.3. Mode conversion ...................................... 132
3.4. Optical holographic method ........................... 135
3.5. Computer-generated-hologram method ................... 138
3.5.1. Generation of Laguerre-Gaussian or vortex
hollow beams .................................. 138
3.5.2. Generation of higher-order Bessel beams ....... 141
3.5.3. Generation of localized hollow beams .......... 144
3.5.4. Generation of higher-order Mathieu beams ...... 146
3.6. Method of micron-sized hollow fiber .................. 148
3.7. Method of radial-distributed Π-phase plate ........... 152
3.8. Method of azimuthal-distributed Π-phase plate ........ 155
§4. Classification of dark hollow beams ....................... 158
4.1. Hollow Gaussian beam (HGB) ........................... 158
4.2. Laguerre-Gaussian beam (LGB) ......................... 158
4.3. Higher-order Bessel beam or Bessel-Gaussian beam
(BGB) ................................................ 159
4.4. TEM01*, doughnut hollow beams (DHB) .................. 160
4.5. LP01-mode hollow beam (LPHB) ......................... 161
4.6. Double-Gaussian-profile hollow beam (DGHB) ........... 161
4.7. Focused hollow beam (FHB) ............................ 162
4.8. Localized hollow beam (LHB) .......................... 162
4.9. Higher-order Mathieu hollow beams (MHB) .............. 163
4.10.Double-rectangular-profile hollow beams (DRHB) ....... 165
§5. Applications of DHBs in modern optics ..................... 165
5.1. Optical trap for microscopic particles (optical
tweezers) ............................................ 165
5.2. Optical motor for microscopic particles (optical
spanners) ............................................ 169
5.3. Light guiding light (optical hosepipes) .............. 172
§6. Applications of DHBs in atom optics ....................... 173
6.1. Dipole force trap for cold atoms (atomic tweezers) ... 173
6.2. Cooling of neutral atoms (atomic refrigerator) ....... 176
6.3. Manipulation and control of cold atoms ............... 180
6.3.1. Atomic wave guide ............................. 181
6.3.2. Atomic funnels ................................ 183
6.3.3. Atomic lens ................................... 184
6.4. Atomic motors ........................................ 185
§7. Applications of DHBs in coherent matter-wave optics ....... 188
7.1. All-optical route to ВЕС in DHB traps ................ 188
7.2. Manipulation and control of ВЕС ...................... 191
7.2.1. Blue-detuned waveguide for ВЕС ................ 191
7.2.2. Red-detuned ring trap for BECs ................ 192
7.2.3. High-field-seeking trap for ВЕС ............... 193
7.3. Output coupling of coherent matter waves ............. 193
§8. Summary and outlook ....................................... 196
8.1. Summary .............................................. 196
8.2. Outlook .............................................. 197
Acknowledgments ........................................... 199
References ................................................ 199
Chapter 4. Two-photon lasers, Daniel J. Gauthier (Durham,
NC, USA) ........................................... 205
§1. Introduction .............................................. 207
§2. Two-photon processes ...................................... 210
2.1. Spontaneous emission ................................. 211
2.2. Absorption ........................................... 213
2.3. Stimulated emission and lasing ....................... 214
§3. Simple models of amplification and lasing ................. 218
3.1. Rate-equation model .................................. 218
3.2. Coherent effects in two-photon amplification ......... 224
3.3. Competing processes .................................. 228
§4. Two-photon amplification and lasing ....................... 231
§5. The two-photon maser ...................................... 235
5.1. Realization of the two-photon maser .................. 237
§6. The dressed-state two-photon laser ........................ 239
6.1. Measurement of continuous-wave two-photon
amplification ........................................ 246
6.2. Realization of the continuous-wave two-photon
laser ................................................ 248
§7. The Raman two-photon laser ................................ 251
§8. Quantum-statistical and nonlinear dynamical properties .... 260
8.1. Quantum-statistical properties and squeezing ......... 260
8.2. Nonlinear dynamical properties ....................... 264
§9. Future prospects .......................................... 267
Acknowledgments ........................................... 267
References ................................................ 268
Chapter 5. Nonradiating sources and other "invisible"
objects, Greg Gbur (Amsterdam, The Netherlands) .... 273
§1. Introduction .............................................. 275
§2. Nonradiating sources ...................................... 277
2.1. Monochromatic nonradiating sources ................... 278
2.2. Electromagnetic nonradiating sources ................. 286
2.3. Partially coherent nonradiating sources .............. 288
§3. The inverse source problem ................................ 291
§4. Nonscattering scatterers .................................. 297
§5. One-dimensional localized excitations ..................... 303
§6. Moving charge distributions and radiation reaction ........ 306
§7. Conclusions ............................................... 311
Acknowledgements .......................................... 311
References ................................................ 312
Chapter 6. Lasing in disordered media, Hui Cao (Evanston,
IL, USA) ........................................... 317
§1. Introduction .............................................. 319
§2. Random laser with incoherent feedback ..................... 320
2.1. Laser with scattering reflector ...................... 320
2.2. Photonic bomb ........................................ 322
2.3. Powder laser ......................................... 323
2.4. Laser paint .......................................... 327
§3. Random laser with coherent feedback - Experiment .......... 332
3.1. Lasing oscillation in ZnO powder ..................... 332
3.2. Transition between two types of random lasers ........ 341
3.3. Characteristic length scales for random lasers ....... 346
3.4. Micro random laser ................................... 353
3.5. A different type of random laser cavity .............. 357
§4. Random laser with coherent feedback - Theory .............. 358
4.1. Chaotic laser theory ................................. 358
4.2. Time-dependent theory ................................ 359
4.3. Analytical approach .................................. 361
4.4. Quantum theory ....................................... 362
§5. Interplay of localization and amplification ............... 362
§6. Applications of random lasers ............................. 364
Acknowledgment ............................................ 366
References ................................................ 367
Author index for Volume 45 .................................... 371
Subject index for Volume 45 ................................... 387
Contents of previous volumes .................................. 391
Cumulative index - Volumes 1-45 ............................... 401
|