Bukovsky L. The structure of the real line (Basel, 2011). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаBukovský L. The structure of the real line. - Basel: Birkhäuser, 2011. - xiv, 536 p. - (Monografie Matematyczne; Vol.71). - xiv, 536 p. - Bibliogr.: p.493-520. - Ind.: p.525-536. - ISBN 978-3-0348-0005-1
 

Место хранения: 013 | Институт математики СО РАН | Новосибирск | Библиотека

Оглавление / Contents
 
Preface ........................................................ xi

1  Introduction
   1.1  Set Theory .............................................. 2
   1.2  Topological Preliminaries .............................. 21
   Historical and Bibliographical Notes ........................ 36
2  The Real Line
   2.1  The Definition ......................................... 39
   2.2  Topology of the Real Line .............................. 46
   2.3  Existence and Uniqueness ............................... 55
   2.4  Expressing a Real by Natural Numbers ................... 62
   Historical and Bibliographical Notes ........................ 70
3  Metric Spaces and Real Functions
   3.1  Metric and Euclidean Spaces ............................ 74
   3.2  Polish Spaces .......................................... 86
   3.3  Borel Sets ............................................. 97
   3.4  Convergence of Functions .............................. 105
   3.5  Baire Hierarchy ....................................... 116
   Historical and Bibliographical Notes ....................... 124
4  Measure Theory
   4.1  Measure ............................................... 127
   4.2  Lebesgue Measure ...................................... 139
   4.3  Elementary Integration ................................ 145
   4.4  Product of Measures, Ergodic Theorem .................. 154
   Historical and Bibliographical Notes ....................... 159
5  Useful Tools and Technologies
   5.1  Souslin Schemes and Sieves ............................ 162
   5.2  Pointclasses .......................................... 171
   5.3  Boolean Algebras ...................................... 182
   5.4  Infinite Combinatorics ................................ 194
   5.5  Games Played by Infinitely Patient Players ............ 207
   Historical and Bibliographical Notes ....................... 213
6  Descriptive Set Theory
   6.1  Borel Hierarchy ....................................... 216
   6.2  Analytic Sets ......................................... 222
   6.3  Projective Hierarchy .................................. 230
   6.4  Co-analytic and Σ12 Sets .............................. 238
   Historical and Bibliographical Notes ....................... 246
7  Decline and Fall of the Duality
   7.1  Duality of Measure and Category ....................... 250
   7.2  Duality Continued ..................................... 258
   7.3  Similar not Dual ...................................... 266
   7.4  The Fall of Duality Bartoszyński Theorem .............. 271
   7.5  Cichoń Diagram ........................................ 282
   Historical and Bibliographical Notes ....................... 290
8  Special Sets of Reals
   8.1  Small Sets ............................................ 293
   8.2  Sets with Nice Subsets ................................ 307
   8.3  Sequence Convergence Properties ....................... 317
   8.4  Covering Properties ................................... 332
   8.5  Coverings versus Sequences ............................ 342
   8.6  Thin Sets of Trigonometric Series ..................... 353
   Historical and Bibliographical Notes ....................... 368
9  Additional Axioms
   9.1  Continuum Hypothesis and Martin's Axiom ............... 375
   9.2  Equalities, Inequalities and All That ................. 383
   9.3  Assuming Regularity of Sets of Reals .................. 396
   9.4  The Axiom of Determinacy .............................. 405
   Historical and Bibliographical Notes ....................... 413
10 Undecidable Statements
   10.1 Projective Sets ....................................... 415
   10.2 Measure Problem ....................................... 422
   10.3 The Linear Ordering of the Real Line .................. 430
   10.4 Reversing the Order of Integration .................... 440
   10.5 Permitted Sets of Trigonometric Series ................ 446
   Historical and Bibliographical Notes ....................... 453
11 Appendix
   11.1 Sets, Posets, and Trees ............................... 455
   11.2 Rings and Fields ...................................... 465
   11.3 Topology and the Real Line ............................ 473
   11.4 Some Logic ............................................ 475
   11.5 The Metamathematics of the Set Theory ................. 483

Bibliography .................................................. 493

Index of Notation ............................................. 521

Index ......................................................... 525


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:22:14 2019. Размер: 8,368 bytes.
Посещение N 1546 c 07.06.2011