Kostic M. Generalized semigroups and cosine functions (Beograd, 2011). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаKostić M. Generalized semigroups and cosine functions. - Beograd: Matematički institut SANU, 2011. - 352 p. - Bibliogr.: p.335-350. - ISBN 978-86-80593-45-6
 

Место хранения: 013 | Институт математики СО РАН | Новосибирск | Библиотека

Оглавление / Contents
 
PREFACE ......................................................... 1

Chapter 1. INTRODUCTION ......................................... 3
1.1. Operator-valued functions, Laplace transforms and closed 
     operators .................................................. 3
1.2. C-regularized semigroups and cosine functions ............. 10
1.3. Function spaces ........................................... 21
1.4. Complex powers of operators ............................... 25
     1.4.1. Complex powers of densely defined operators ........ 25
     1.4.2. Complex powers of non-densely defined operators .... 30

Chapter 2. CONVOLUTED C-SEMIGROUPS AND COSINE FUNCTIONS ........ 43
2.1. Definitions and main structural properties ................ 43
2.2. Exponentially bounded convoluted C-semigroups and cosine
     functions ................................................. 75
2.3. Abstract Cauchy problems .................................. 81
2.4. Analytical properties ..................................... 94
2.5. Perturbation theorems .................................... 109
2.6. Convoluted C-groups ...................................... 127
2.7. Spectral characterizations ............................... 145
2.8. Examples and applications ................................ 152

Chapter 3. ABSTRACT CAUCHY PROBLEMS IN THE SPACES OF 
           OPERATOR VALUED (ULTRA-DISTRIBUTIONS AND
           HYPERFUNCTIONS ..................................... 165
3.1. C-Distribution semigroups ................................ 165
     3.1.1. Elementary properties of C-distribution 
            semigroups ........................................ 165
     3.1.2. Connections with integrated C-semigroups.
            Exponential C-distribution semigroups ............. 168
     3.1.3. Dense C-distribution semigroups ................... 174
     3.1.4. Chaotic C-distribution semigroups ................. 178
3.2. Various classes of distribution semigroups ............... 188
3.3. Distribution groups ...................................... 206
     3.3.1. Introduction and basic properties of 
            distribution groups ............................... 206
     3.3.2. [B0,..., Bn, C0,..., Cn-1] groups ................... 212
     3.3.3. Further relations between distribution groups, 
            local integrated groups and [B0,..., Bn, C0,..., 
            Cn-1]-groups ....................................... 220
3.4. Distribution cosine functions ............................ 241
     3.4.1. Definition and elementary properties .............. 241
     3.4.2. Relationship to integrated cosine functions, 
            convolution equations and local C-regularized
            cosine functions .................................. 246
     3.4.3. Exponential distribution cosine functions ......... 251
     3.4.4. Dense distribution cosine functions ............... 254
     3.4.5. Almost-distribution cosine functions, cosine 
            convolution products and their relations with 
            distribution cosine functions ..................... 255
     3.4.6. Examples .......................................... 264
3.5. Ultradistribution and hyperfunction semigroups ........... 266
     3.5.1. The structural properties of ultradistribution 
            semigroups ........................................ 266
     3.5.2. Exponential ultradistribution semigroups .......... 271
     3.5.3. Differentiable ultradistribution semigroups ....... 276
     3.5.4. Hyperfunction spaces, semigroups and sines ........ 289
3.6. Regularization of ultradistribution semigroups and 
     sines .................................................... 292
     3.6.1. Regularization of Gevrey type ultradistribution 
            semigroups ........................................ 292
     3.6.2. Regularization of ultradistribution semigroups
            whose generators possess ultra-polynomially 
            bounded resolvent ................................. 297
     3.6.3. Higher order time-fractional equations. 
            Regularization of ultradistribution sines ......... 305

APPENDIX ...................................................... 317

Abstract Volterra Equations of Nonscalar Type ................. 317

Bibliography .................................................. 335


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:22:12 2019. Размер: 8,050 bytes.
Посещение N 2015 c 24.05.2011