Foreword - P.K. Gallagher ....................................... v
Preface - M.E. Brown and P.K. Gallagher ........................ vi
Contributors ................................................... xx
CHAPTER 1. INTRODUCTION TO RECENT ADVANCES, TECHNIQUES AND
APPLICATIONS (Michael E. Brown and Patrick
K. Gallagher)
1 THE HANDBOOK OF THERMAL ANALYSIS AND CALORIMETRY ............. 1
2 THE LITERATURE OF THERMAL ANALYSIS AND CALORIMETRY ........... 2
2.1 Books ................................................... 2
2.2 Major conferences and their proceedings ................. 3
2.3 Websites ................................................ 5
3 NOMENCLATURE ................................................. 6
4 RECENT ADVANCES IN TECHNIQUES ................................ 6
4.1 Micro-Thermal Analysis .................................. 6
4.2 Pulsed thermal analysis ................................. 7
4.3 Fast scanning calorimetry ............................... 7
5 ADVANCES IN APPLICATIONS ..................................... 7
5.1. Quartz-crystal microbalances ............................ 7
5.2. Electrical techniques ................................... 8
5.3. Heating-stage spectroscopy .............................. 8
5.4. Rheology ................................................ 8
5.5. Catalysis ............................................... 9
5.6. Nanoparticles ........................................... 9
6 KINETICS ..................................................... 9
7 ADDITIONAL TOPICS ........................................... 10
7.1 Thermochemistry ........................................ 10
7.2 Coordination compounds and inorganics .................. 10
7.3 Thermophysical properties .............................. 11
7.4 Polymorphism ........................................... 11
7.5 Medical applications ................................... 11
7.6 Dental materials ....................................... 12
8 QUALITY CONTROL ............................................. 12
CHAPTER 2. DEVELOPMENTS IN NOMENCLATURE (Jean Rouquerol,
I. Wadsö, T. Lever and P. Haines)
1 INTRODUCTION ................................................ 13
2 2006 ICTAC NOMENCLATURE OF THERMAL ANALYSIS ................. 14
2.1 Scope .................................................. 14
2.2 Intent ................................................. 15
2.3 Definition of the field of Thermal Analysis (ТА) ....... 15
2.4 Techniques ............................................. 15
2.5 Terminology and Glossary ............................... 16
2.6 Experimental conditions ................................ 22
2.7 Symbols used specifically in Thermal Analysis .......... 22
2.8 Overview and historical matters ........................ 23
2.9 Recent Members of the ICTAC Nomenclature Committee ..... 24
3 COMMENTS ON THE 2006 ICTAC NOMENCLATURE OF THERMAL
ANALYSIS .................................................... 24
4 A CONVENIENT NOMENCLATURE FOR CALORIMETERS .................. 28
4.1 Basic representation, criteria and categories .......... 28
4.2 "Passive" adiabatic calorimeters ....................... 30
4.3 "Active" adiabatic calorimeters ........................ 32
4.4 "Passive" diathermal calorimeters ...................... 34
4.5 "Active" diathermal calorimeters ....................... 35
5 OTHER POSSIBLE NOMENCLATURES FOR CALORIMETERS ............... 37
5.1 Nomenclature proposed by Swietoslawski in 1933 ......... 37
5.2 Nomenclature proposed by Calvet and Prat in 1956 ....... 37
5.3 Nomenclature proposed by Evans in 1969 ................. 39
5.4 Nomenclature proposed by Skinner in 1969 ............... 39
5.5 Nomenclature proposed by Rouquerol and Laffitte in
1972 ................................................... 40
5.6 Nomenclature proposed by Hemminger and Hohne in 1984 ... 41
5.7 Nomenclature proposed by Rouquerol and Zielenkiewicz
in 1986 ................................................ 44
5.8 Nomenclature proposed by Tachoire and Médard in 1994 ... 44
5.9 Nomenclature proposed by Wadsö in 1997 ................. 45
5.10 Nomenclature proposed by Hemminger and Särge in 1999 ... 46
5.11 Nomenclature proposed by Hansen in 2001 ................ 47
5.12 Nomenclature proposed by Matsuo in 2004 ................ 48
5.13 Nomenclature proposed by Zielenkiewicz in 2004 ......... 50
6 CONCLUSIONS ................................................. 51
7 REFERENCES ............................................... 52-54
CHAPTER 3. MICRO-THERMAL ANALYSIS AND RELATED TECHNIQUES
(Duncan M. Price)
1 INTRODUCTION ................................................ 55
2 SCANNING THERMAL MICROSCOPY (STHM) .......................... 57
2.1 Introduction ........................................... 57
2.2 Instrumentation for SThM ............................... 58
2.3 Probe design ........................................... 59
2.4 Quantitative SThM ...................................... 61
2.5 Other SThM techniques .................................. 66
3 LOCALISED THERMAL ANALYSIS .................................. 67
3.1 Principles ............................................. 67
3.2 Calibration ............................................ 68
3.3 Features ............................................... 69
3.4 Terminology ............................................ 71
3.5 Applications ........................................... 71
4 LOCALISED CHEMICAL ANALYSIS ................................. 78
4.1 Introduction ........................................... 78
4.2 Localised evolved gas analysis ......................... 78
4.3 Near-field photothermal spectroscopy ................... 82
4.4 Thermally-assisted micro-sampling ...................... 83
5 CONCLUSIONS ................................................. 84
6 REFERENCES ............................................... 84-92
CHAPTER 4. PULSE THERMAL ANALYSIS (M. Maciejewski and A. Baiker)
1 INTRODUCTION ................................................ 93
2 EXPERIMENTAL ................................................ 94
3 CALIBRATION OF SPECTROMETRY SIGNALS IN HYPHENATED THERMO
ANALYTICAL TECHNIQUES ....................................... 95
3.1 Calibration of gases ................................... 95
3.2 Verification of the calibration ........................ 98
3.3 Calibration of liquids ................................. 99
4 QUANTIFICATION OF THE SPECTROMETRY SIGNALS IN A
TA-MS-FTIR SYSTEM .......................................... 101
4.1 Determination of the intrinsic fragmentation in
a TA-MS system ........................................ 101
4.2 Application of PulseTA® for quantification of
gas-solid reactions ................................... 104
5 INJECTION OF A GAS WHICH REACTS WITH THE SOLID ............. 112
5.1. Investigations of the reduction and oxidation
of solids ............................................. 112
5.2 Investigation of the redox behaviour of solids:
reduction and re-oxidation of CeO2 .................... 116
5.3 Investigation of gas-solid reactions .................. 118
5.4 Miscellaneous applications ............................ 123
6 INJECTION OF A GAS WHICH ADSORBS ON THE SOLID .............. 124
6.1 Adsorption of ammonia on HZMS-5 zeolite ............... 124
6.2 Investigation of the adsorption and desorption of
NH3 on a titania-silica aerogel ....................... 125
6.3 Investigation of adsorption combined with gas-solid
reaction .............................................. 126
6.4 Miscellaneous applications ............................ 129
7 CONCLUSIONS ................................................ 129
8 REFERENCES ............................................. 130-132
CHAPTER 5. THE QUARTZ CRYSTAL MICROBALANCE (Allan L. Smith)
1 HIGH SENSITIVITY BALANCES: THEIR ROLE IN THERMAL ANALYSIS
AND CALORIMETRY ............................................ 133
2 EARLY HISTORY OF THE QUARTZ CRYSTAL MICROBALANCE ........... 134
3 THE LITERATURE OF THERMAL ANALYSIS AND OF THE QUARTZ
CRYSTAL MICROBALANCE ....................................... 135
4 PRINCIPLES OF OPERATION OF THE QUARTZ CRYSTAL
MICROBALANCE (QCM) ......................................... 142
5 DETECTION ELECTRONICS ...................................... 147
5.1 Simple QCM driving circuits ........................... 147
5.2 Frequency and damping measurements .................... 148
5.3 Impedance analysis .................................... 148
6 IS THE TRANSVERSE SHEAR MODE RESONATOR A TRUE
MICROBALANCE? .............................................. 148
7 PRACTICAL DETAILS .......................................... 150
7.1 Calibration ........................................... 150
7.2 Comparison of gravimetric and Sauerbrey masses ........ 151
7.3 Sample Preparation .................................... 152
8 CHEMICAL AND BIOLOGICAL APPLICATIONS OF THE QCM ............ 152
8.1 Film-thickness monitors in vacuum deposition .......... 152
8.2 The metal/solution interface in electrochemical
cells ................................................. 153
8.3 Faraday Society Discussion No. 107, 1997 .............. 154
8.4 Determination of shear and loss modulus at QCM
frequencies ........................................... 155
8.5 Chemical sensors and biosensors ....................... 156
8.6 Biological surface science ............................ 158
9 SENSORS .................................................... 159
9.1 Acoustic microsensors - the challenge behind
microgravimetry ....................................... 159
9.2 Piezoelectric sensors ................................. 159
10 THE QUARTZ CRYSTAL MICROBALANCE/HEAT CONDUCTION
CALORIMETER ................................................ 161
10.1 Introduction .......................................... 161
10.2 Beginnings of QCM/HCC ................................. 161
10.3 Development of QCM/HCC ................................ 163
10.4 Biological applications ............................... 164
10.5 The Masscal Scientific Instruments Gl
Microbalance/Calorimeter .............................. 164
10.6 Recent applications ................................... 165
10.7 Conclusion ............................................ 165
11 REFERENCES ............................................. 166-170
CHAPTER 6. HEATING STAGE SPECTROSCOPY: INFRARED, RAMAN,
ENERGY DISPERSIVE X-RAY AND X-RAY PHOTOELECTRON
SPECTROSCOPY (Ray L. Frost and J. Theo Kloprogge)
1 INFRARED EMISSION SPECTROSCOPY ............................. 171
1.1 Introduction .......................................... 171
1.2 The theory behind infrared emission spectroscopy
(IES) ................................................. 173
1.3 Infrared emission spectroscopy of alunite ............. 179
2 HEATING STAGE RAMAN SPECTROSCOPY ........................... 182
2.1 Heating stage Raman spectroscopy of weddellite ......... 186
3 THERMAL STUDIES OF MATERIALS USING HEATING AND COOLING
STAGE SCANNING ELECTRON MICROSCOPY AND ENERGY DISPERSIVE
X-RAY ANALYSIS ............................................. 188
3.1 Apparatus ............................................. 188
3.2 Thermal decomposition of weddelite by heating stage
SEM and infrared emission spectroscopy (IES) .......... 191
3.3 Sublimation of urea CH4N2O ............................ 196
3.4 Wetting/drying оf montmorillonite ..................... 198
4 HEATING STAGE PHOTOELECTRON SPECTROSCOPY (XPS) ............. 200
4.1 Dehydration of calcium oxalate monohydrate
CaC2O4H2O ............................................. 201
4.2 Calcination of titania/PVA expanded hectorite ......... 202
5 CONCLUSIONS ................................................ 206
6 ACKNOWLEDGEMENTS ........................................... 206
7 REFERENCES ............................................. 206-208
CHAPTER 7. ELECTRICAL TECHNIQUES (Madalena Dionísio and
João F. Mano)
1 INTRODUCTION ............................................... 209
1.1 Dielectric materials in the presence of static
electric fields ....................................... 209
1.2 Application of alternating electric fields ............ 211
2 MEASUREMENT TECHNIQUES ..................................... 216
2.1 Introduction .......................................... 216
2.2 Equivalent circuits ................................... 217
2.3 Time-domain measurements .............................. 219
2.4 Cells ................................................. 220
2.5 Temperature calibration in dielectric and electrical
measurements .......................................... 222
3 DIELECTRIC SPECTROSCOPY IN MODEL SYSTEMS AND ASSIGNMENT
OF MOLECULAR MOTIONS ....................................... 224
3.1 Sub-glass mobility ..................................... 225
3.2 α - Relaxation ........................................ 231
3.3 Crossover region ...................................... 235
3.4 Low-frequency processes ............................... 240
3.5 Dielectric response in semi-crystalline polymers ...... 247
4 THERMALLY STIMULATED DEPOLARIZATION CURRENTS ............... 253
5 CONCLUSIONS ................................................ 259
6 REFERENCES ............................................. 260-268
CHAPTER 8. BENEFITS AND POTENTIALS OF HIGH PERFORMANCE
DIFFERENTIAL SCANNING CALORIMETRY (HPer DSC)
(Vincent B.F. Mathot, Geert Vanden Poel and
Thijs F.J. Pijpers)
1 INTRODUCTION ............................................... 269
2 MAJOR CHALLENGES ........................................... 270
2.1 Introduction .......................................... 270
2.2 Measuring under realistic conditions .................. 271
2.3 The study of metastability and reorganization ......... 271
3 HIGH-SPEED CALORIMETRY ..................................... 276
3.1 Instrumental aspects .................................. 276
3.2 Temperature calibration ............................... 277
3.3 Constancy of the scan rate ............................ 282
3.4 Linking experiment with practice and processing ....... 284
3.5 Quantitative measurements ............................. 291
3.6 Higher sensitivity; working on minute amounts of
material .............................................. 293
4 CONCLUSIONS ................................................ 295
5 REFERENCES ............................................. 295-298
CHAPTER 9. DYNAMIC PULSE CALORIMETRY - THERMOPHYSICAL
PROPERTIES OF SOLID AND LIQUID METALS AND
ALLOYS (C. Cagran and G. Pottlacher)
1 INTRODUCTION - THERMOPHYSICAL PROPERTIES ................... 299
2 DYNAMIC PULSE CALORIMETRY (PULSE-HEATING) .................. 301
2.1 Historical development and brief description of
pulse-heating ......................................... 301
2.2 Classification of pulse-heating systems and existing
systems ............................................... 302
3 EXPERIMENTAL DESCRIPTION ................................... 304
3.1 General information about pulse-heating ............... 304
3.2 Experiment - Basic electrical quantities .............. 308
3.3 Experiment - Derived thermophysical properties ........ 310
3.4 Experiment - Levitation ............................... 324
4 EXPERIMENTAL DATA - IRIDIUM ................................ 325
5 RECENTLY DEVELOPED (SPECIAL) APPLICATIONS OF PULSE
CALORIMETRY ................................................ 329
5.1 Extended temperature range by a pulse-calorimeter/
DSC combination ....................................... 329
5.2 Mechanical properties with a Kolsky bar apparatus ..... 330
5.3 Pulse-heating/ laser flash combination ................ 331
5.4 Pulse-heating microcalorimetry ........................ 332
6 UNCERTAINTIES .............................................. 333
6 FURTHER READING ............................................ 333
7 CONCLUSIONS ................................................ 334
8 ACKNOWLEDGEMENTS ........................................... 334
9 REFERENCES ............................................. 335-342
CHAPTER 10. SURFACE PROPERTIES OF NANOPARTICLES (Piotr Staszczuk)
1 INTRODUCTION ............................................... 343
1.1 Nanotechnology and nanostructures ..................... 343
1.2 Total (energetic and structural) heterogeneity of
surfaces .............................................. 345
1.3 Fractal dimensions of nanoparticles ................... 348
2 PHYSICOCHEMICAL PROPERTIES OF SELECTED NANOMATERIALS ....... 349
2.1. Carbon nanotubes ..................................... 349
2.2 Montmorillonites ...................................... 349
2.3 Zeolites .............................................. 350
2.4 Superconductor materials .............................. 350
3 TECHNIQUES USED ............................................ 351
3.1 Q-TG thermogravimetry ................................. 351
3.2 Surface adsorption .................................... 356
3.3 Porosimetry ........................................... 356
3.4 Calculation of fractal dimensions from sorptometry
and porosimetry data .................................. 357
3.5 Atomic force microscopy, (AFM), Scanning electron
microscopy (SEM) and Energy dispersive X-ray
spectroscopy (EDX) .................................... 358
4 EXAMPLES OF STUDIES ON SELECTED MATERIALS .................. 359
4.1 Carbon nanotubes ...................................... 359
4.2 Montmorillonites ...................................... 370
4.3 Aluminas .............................................. 371
4.4 Fractal dimensions .................................... 381
5 SUMMARY .................................................... 382
6 REFERENCES.............................................. 384-386
CHAPTER 11. HETEROGENEOUS CATALYSIS ON SOLIDS (Ljiljana
Damjanovic and Aline Auroux)
1 INTRODUCTION ............................................... 387
2 EXPERIMENTAL ............................................... 388
2.1 Some limitations of the technique for characterizing
catalytic sites ....................................... 394
2.2 Probe molecules most commonly used to characterize
catalytic surfaces .................................... 396
2.3 The role and the influence of the probe molecule in
determining adsorption heats .......................... 398
3 ACID-BASE PROPERTIES OF CATALYST SURFACES .................. 401
3.1 Zeolites and related materials ........................ 401
3.2 Bulk, doped, supported and mixed oxides ............... 408
4 REDOX PROPERTIES OF CATALYST SURFACES ...................... 421
4.1 Metals and supported metals ........................... 421
4.2 Oxides and supported oxides ........................... 424
5 CORRELATION WITH CATALYTIC ACTIVITY ........................ 426
6 CONCLUSIONS ................................................ 430
7 REFERENCES ............................................. 431-438
CHAPTER 12. COORDINATION COMPOUNDS AND INORGANICS
(Stefano Materazzi)
1 INTRODUCTION ............................................... 439
2 REVIEWS .................................................... 440
3 USE OF COORDINATION COMPOUNDS AND INORGANICS TO DEVELOP
NEW METHODS ................................................ 441
4 INORGANICS ................................................. 445
4.1 Alloys ................................................ 445
4.2 Arsenates ............................................. 449
4.3 Borates ............................................... 450
4.4 Carbonates ............................................ 451
4.5 Chromates ............................................. 453
4.6 Iodides ............................................... 453
4.7 Nitrates and Nitrites ................................. 454
4.8 Oxalates .............................................. 456
4.9 Oxides ................................................ 460
4.10 Perchlorates .......................................... 463
4.11 Phosphates ............................................ 464
4.12 Stannates ............................................. 465
4.13 Sulfides, Sulfites and Sulfates ....................... 466
5 METAL-ORGANIC FRAMEWORKS: COORDINATION POLYMERS ............ 469
5.1 Introduction .......................................... 469
5.2 Bismuth ............................................... 469
5.3 Cadmium ............................................... 469
5.4 Cobalt ................................................ 470
5.5 Copper ................................................ 472
5.6 Iron .................................................. 477
5.7 Lanthanides ........................................... 478
5.8 Lead .................................................. 482
5.9 Lithium ............................................... 483
5.10 Magnesium ............................................. 484
5.11 Manganese ............................................. 485
5.12 Nickel ................................................ 486
5.13 Palladium ............................................. 488
5.14 Silver ................................................ 488
5.15 Sodium ................................................ 490
5.16 Strontium ............................................. 490
5.17 Zinc .................................................. 491
6 REFERENCES ............................................. 493-502
CHAPTER 13. ISOCONVERSIONAL KINETICS (Sergey Vyazovkin)
1 INTRODUCTION ............................................... 503
2 ISOCONVERSIONAL METHODS .................................... 504
3 CONCEPT OF VARIABLE ACTIVATION ENERGY ...................... 508
4 KINETICS OF PHYSICAL PROCESSES ............................. 512
4.1 Crystallization ....................................... 512
4.2 Melt and glass crystallization of polymers ............ 516
4.3 Second-order transitions .............................. 518
4.4 Glass transition ...................................... 519
5 KINETICS OF CHEMICAL PROCESSES ............................. 522
5.1 Reversible decompositions ............................. 522
5.2 Thermal and thermo-oxidative degradation of polymers .. 525
5.3 Crosslinking .......................................... 526
6 ISOCONVERSIONAL METHODS AND THE KINETIC TRIPLET ............ 529
6.1 Is it really needed? .................................. 529
6.2 Isoconversional kinetic predictions ................... 529
6.3 Evaluating the pre-exponential factor and the
reaction model ........................................ 532
7 CONCLUSIONS ................................................ 534
8 REFERENCES ............................................. 535-538
CHAPTER 14. THERMOCHEMISTRY (M.V. Roux and M. Temprado)
1 INTRODUCTION ............................................... 539
1.1 The objectives of thermochemistry ..................... 539
1.2 Short historical introduction ......................... 541
2 EXPERIMENTAL DETERMINATION OF THE ENTHALPIES OF FORMATION
OF ORGANIC COMPOUNDS ....................................... 542
2.1 Introduction .......................................... 542
2.2 Combustion calorimetry ................................ 542
2.3 Reaction calorimetry .................................. 550
2.4 Thermochemistry of phase changes ...................... 551
2.5 Additional techniques ................................. 554
3 REFERENCE MATERIALS ........................................ 557
4 THERMOCHEMICAL DATA BASES FOR ORGANIC COMPOUNDS ............ 558
5 RECENT DEVELOPMENTS IN EXPERIMENTAL TECHNIQUES ............. 559
5.1 Combustion calorimetry ................................ 559
5.2 Enthalpies of sublimation and vaporization ............ 560
6 COMPUTATIONAL THERMOCHEMISTRY .............................. 561
7 THERMOCHEMISTRY AS A POWERFUL TOOL TO SOLVE ACTUAL
CHEMICAL PROBLEMS .......................................... 562
7.1 Thermochemistry of cyclobutadiene: Enthalpy of
formation, ring strain, and anti-aromaticity .......... 562
7.2 Thermochemistry of cubane and cuneane ................. 563
7.3 Enthalpy of formation of Buckminsterfullerene, C60 .... 563
7.4 Steric, estereolectronic and electrostatic
interactios in oxanes, thianes and sulfone and
sulfoxide derivatives ................................. 564
7.5 Keto-enol tautomerism and enthalpy of mixing between
tautomers of acetylacetone ............................ 565
7.6 Radical generation by using organometallic complexes
of Group 6 metals ..................................... 566
7.7 Application to biochemical systems .................... 566
7.8 Thermochemistry of reactions in gas phase for
compounds with important implications as catalysts .... 566
8 CONCLUSIONS ................................................ 567
9 REFERENCES ............................................. 567-578
CHAPTER 15. THERMAL ANALYSIS AND RHEOLOGY (Mustafa Versan Kok)
1 INTRODUCTION ............................................... 579
2 PARAFFIN WAXES ............................................. 580
3 EXPERIMENTAL TECHNIQUES .................................... 581
3.1 Introduction .......................................... 581
3.2 Differential scanning calorimetry (DSC) ............... 582
3.3 Thermomicroscopy and rheology ......................... 584
4 APPLICATIONS ............................................... 584
5 CONCLUSIONS ................................................ 595
6 REFERENCES ............................................. 595-596
CHAPTER 16. POLYMORPHISM (Mino R. Caira)
1 INTRODUCTION ............................................... 597
2 RECENT DEVELOPMENTS IN POLYMORPHIC RESEARCH ................ 599
2.1 Introduction .......................................... 599
3 THERMAL ANALYSIS IN STUDIES OF CRYSTAL POLYMORPHISM ........ 603
3.1 Introduction .......................................... 603
4 RECENT STUDIES ............................................. 611
4.1 Characterization of polymorphs and polymorphic
transformations ....................................... 611
4.2 Characterization of solvates and desolvation
processes ............................................. 621
5 CONCLUSIONS ................................................ 626
6 ACKNOWLEDGEMENTS ........................................... 626
7 REFERENCES ............................................. 626-630
CHAPTER 17. DENTAL MATERIALS (W.A. Brantley)
1 INTRODUCTION ............................................... 631
2 NICKEL-TITANIUM ALLOYS IN DENTISTRY ........................ 631
2.1 Metallurgy background ................................. 631
2.2 Nickel-titanium endodontic instruments ................ 632
2.3 Nickel-titanium orthodontic wires ..................... 641
3 DENTAL POLYMER MATERIALS ................................... 647
3.1 Silicone maxillofacial materials ...................... 647
3.2 Elastomeric impression materials ...................... 650
3.3 Orthodontic elastomeric modules ....................... 654
3.4 Resin composites and other dental polymers ............ 656
4 ACKNOWLEDGMENTS ............................................ 658
5 REFERENCES ............................................. 658-662
CHAPTER 18. MEDICAL APPLICATIONS OF THERMAL METHODS (Beverley
D. Glass)
1 INTRODUCTION ............................................... 663
2 APPLICATION TO PENETRATION OF DRUGS INTO THE SKIN .......... 664
2.1 Introduction .......................................... 664
2.2 Thermoanalytical techniques and the skin .............. 665
2.3 Thermoanalytical techniques and drug penetration
(penetration enhancers) into the skin ................. 668
3 APPLICATION TO DRUG DELIVERY ............................... 675
3.1 Introduction .......................................... 675
3.2 Thermoanalytical techniques used in drug delivery ..... 675
4 APPLICATION TO IMPLANTS .................................... 677
4.1 Introduction .......................................... 677
4.2 Thermoanalytical techniques used in implants .......... 677
5 APPLICATIONS TO PROSTHETICS ................................ 685
5.1 Introduction .......................................... 685
5.2 Bioprostheses used in heart valves .................... 685
5.3 Bioprostheses used in aortic valves ................... 686
6 MISCELLANEOUS APPLICATIONS ................................. 687
6.1 DSC studies on albumins ............................... 687
6.2 DSC studies on the human intervertebral disc .......... 688
6.3 DSC studies of human skin from patients with diabetes
mellitus (DM) ......................................... 689
6.4 DSC studies on cartilage destruction by septic
arthritis ............................................. 689
6.5 DSC studies on the effect of tetracaine on
erythrocyte membranes ................................. 689
6.6 DSC studies on modified poly(urethaneurea) blood
sacs .................................................. 690
7 CONCLUSIONS ................................................ 690
8 REFERENCES ............................................. 691-694
CHAPTER 19. QUALITY CONTROL (Donald J. Burlett)
1 INTRODUCTION ............................................ 695
2 GENERAL CONSIDERATIONS .................................. 696
3 POLYMERS ................................................ 698
4 ORGANIC CHEMICALS ....................................... 704
5 PHARMACEUTICALS ......................................... 709
6 FOODS .................................................. 715
7 INORGANIC CHEMICALS ..................................... 722
8 METALS .................................................. 724
9 OTHER REFERENCES ........................................ 728
10 FUTURE OPPORTUNITIES .................................... 729
11 REFERENCES .......................................... 729-732
INDEX ..................................................... 733-756
|