Pava J.A. Nonlinear dispersive equations: existence and stability of solitary and periodic travelling wave solutions (Providence, 2009). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаPava J.A. Nonlinear dispersive equations: existence and stability of solitary and periodic travelling wave solutions. - Providence: American Mathematical Society, 2009. - xi, 256 p. - (Mathematical surveys and monographs; vol.156). - Bibliogr.: p.245-254. - Ind.: p.255-256. - ISBN 978-0-8218-4897-5
 

Место хранения: 013 | Институт математики СО РАН | Новосибирск | Библиотека

Оглавление / Contents
 
Preface ........................................................ xi

Part 1.  History, Basic Models, and Travelling Waves ............ 1

Chapter 1.  Introduction and a Brief Review of the History ...... 3

Chapter 2.  Basic Models ....................................... 17
2.1.  Introduction ............................................. 17
2.2.  Models ................................................... 17
2.3.  Comments ................................................. 22

Chapter 3.  Solitary and Periodic Travelling Wave Solutions .... 25
3.1.  Introduction ............................................. 25
3.2.  Travelling Wave Solutions ................................ 25
3.3.  Examples ................................................. 27
3.4.  The Poisson Summation Theorem and Periodic Wave 
      Solutions ................................................ 39
3.5.  Comments ................................................. 42

Part 2.  Well-Posedness and Stability Definition ............... 47

Chapter 4.  Initial Value Problem .............................. 49
4.1.  Introduction ............................................. 49
4.2.  Some Results about Well-Posedness ........................ 49
4.3.  Some Results about Global Well-Posedness ................. 57
4.4.  Comments ................................................. 58

Chapter 5.  Definition of Stability ............................ 61
5.1.  Introduction ............................................. 61
5.2.  Orbital Stability ........................................ 61
5.3.  Comments ................................................. 64

Part 3.  Stability Theory ...................................... 67

Chapter 6.  Orbital Stability-the Classical Method ............. 69
6.1.  Introduction ............................................. 69
6.2.  Stability of Solitary Wave Solutions for the GKdV ........ 70
6.3.  "Stability of the Blow-up" for a Class of KdV 
      Equations ................................................ 81
6.4.  Comments ................................................. 87

Chapter 7.  Grillakis-Shatah-Strauss's Stability Approach ...... 91
7.1.  Introduction ............................................. 91
7.2.  Geometric Overview of the Theory ......................... 91
7.3.  Stability of Solitary Wave Solutions ..................... 93
7.4.  Stability of Solitary Waves for KdV-Type Equations ....... 98
7.5.  On Albert-Bona's Spectrum Approach ....................... 99
7.6.  Comments ................................................ 100

Part 4.  The Concentration-Compactness Principle in Stability

Theory ........................................................ 103

Chapter 8.  Existence and Stability of Solitary Waves for 
            the GBO ........................................... 105
8.1.  Introduction ............................................ 105
8.2.  Solitary Waves for the GBO .............................. 107
8.3.  Stability of Solitary Waves for the GBO Equations ....... 119
8.4.  Comments ................................................ 124

Chapter 9.  More about the Concentration-Compactness 
            Principle ......................................... 127
9.1.  Introduction ............................................ 127
9.2.  Solitary Wave Solutions of Benjamin-Type Equations ...... 127
9.3.  Stability of Solitary Wave Solutions: the GKdV 
      Equations ............................................... 128
9.4.  Stability of Solitary Wave Solutions: the Benjamin
      Equation ................................................ 129
9.5.  Stability of Solitary Wave Solutions: the Fourth-Order
      Equation ................................................ 133
9.6.  Stability of Solitary Wave Solutions: the GKP-I
      Equations ............................................... 133
9.7.  Comments ................................................ 135

Chapter 10. Instability of Solitary Wave Solutions ............ 137
10.1. Introduction ............................................ 137
10.2. Instability of Solitary Wave Solutions: the GB
      Equations ............................................... 139
10.3. Fifth-Order Korteweg-de Vries Equations ................. 150
10.4. A Generalized Class of Benjamin Equations ............... 152
10.5. Linear Instability and Nonlinear Instability ............ 153
10.6. Comments ................................................ 157

Part 5.  Stability of Periodic Travelling Waves ............... 159

Chapter 11. Stability of Cnoidal Waves ........................ 161
11.1. Introduction ............................................ 161
11.2. Stability of Cnoidal Waves with Mean Zero for KdV 
      Equation ................................................ 164
11.3. Stability of Constant Solutions for the KdV Equation .... 174
11.4. Cnoidal Waves for the ID Benney-Luke Equation ........... 177
11.5. Angulo and Natali's Stability Approach .................. 183
11.6. Comments ................................................ 196

Part 6.  APPENDICES ........................................... 199

Appendix A.  Sobolev Spaces and Elliptic Functions ............ 201
A.l.  Introduction ............................................ 201
A.2.  Lebesgue Space LP(Ω) .................................... 201
A.3.  The Fourier Transform in L1(fig.1n) ......................... 201
A.4.  The Fourier Transform in L2(fig.1n) ......................... 202
A.5.  Tempered Distributions .................................. 202
A.6.  Sobolev Spaces .......................................... 204
A.7.  Sobolev Spaces of Periodic Type ......................... 206
A.8.  The Symmetric Decreasing Rearrangement .................. 207
A.9.    The Jacobian Elliptic Functions ....................... 208

Appendix B.  Operator Theory .................................. 211
B.l.  Introduction ............................................ 211
B.2.  Closed Linear Operators: Basic Theory ................... 211
B.3.  Pseudo-Differential Operators and Their Spectrum ........ 229
B.4.  Spectrum of Linear Operators Associated to Solitary 
      Waves ................................................... 231
B.5.  Sturm-Liouville Theory .................................. 237
B.6.  Floquet Theory .......................................... 240

Bibliography .................................................. 245

Index ......................................................... 255


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:22:04 2019. Размер: 10,562 bytes.
Посещение N 1777 c 12.04.2011