Variational methods in imaging (New York, 2009). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаVariational methods in imaging / O.Scherzer et al.; ed. by S.S.Antman, J.E.Marsden, L.Sirovich. - New York: Springer, 2009. - xiii, 320 p.: ill. - (Applied mathematical sciences; Vol.167). - Incl. bibl. ref. - Ind.: p.315-320. - ISBN 978-0-387-30931-6
 

Оглавление / Contents
 
Part I Fundamentals of Imaging

1  Case Examples of Imaging ..................................... 3
   1.1  Denoising ............................................... 3
   1.2  Chopping and Nodding .................................... 6
   1.3  Image Inpainting ........................................ 8
   1.4  X-ray-Based Computerized Tomography .................... 10
   1.5  Thermoacoustic Computerized Tomography ................. 13
   1.6  Schlieren Tomography ................................... 24

2  Image and Noise Models ...................................... 27
   2.1  Basic Concepts of Statistics ........................... 27
   2.2  Digitized (Discrete) Images ............................ 31
   2.3  Noise Models ........................................... 33
   2.4  Priors for Images ...................................... 36
   2.5  Maximum A Posteriori Estimation ........................ 43
   2.6  MAP Estimation for Noisy Images ........................ 46

Part II Regularization

3  Variational Regularization Methods for the Solution
   of Inverse Problems ......................................... 53
   3.1  Quadratic Tikhonov Regularization in Hilbert Spaces .... 54
   3.2  Variational Regularization Methods in Banach Spaces .... 60
   3.3  Regularization with Sparsity Constraints ............... 79
   3.4  Linear Inverse Problems with Convex Constraints ........ 89
   3.5  Schlieren Tomography .................................. 109
   3.6  Further Literature on Regularization Methods for 
        Inverse Problems ...................................... 112

4  Convex Regularization Methods for Denoising ................ 115
   4.1  The *-Number .......................................... 220
   4.2  Characterization of Minimizers ........................ 125
   4.3  One-dimensional Results ............................... 131
   4.4  Taut String Algorithm ................................. 137
   4.5  Mumford-Shah Regularization ........................... 151
   4.6  Recent Topics on Denoising with Variational Methods ... 155

5  Variational Calculus for Non-convex Regularization ......... 159
   5.1  Direct Methods ........................................ 159
   5.2  Relaxation on Sobolev Spaces .......................... 162
   5.3  Relaxation on BV ...................................... 167
   5.4  Applications in Non-convex Regularization ............. 172
   5.5  One-dimensional Results ............................... 178
   5.6  Examples .............................................. 180
6  Semi-group Theory and Scale Spaces ......................... 185
   6.1  Linear Semi-group Theory .............................. 186
   6.2  Non-linear Semi-groups in Hilbert Spaces .............. 190
   6.3  Non-linear Semi-groups m Banach Spaces ................ 193
   6.4  Axiomatic Approach to Scale Spaces .................... 197
   6.5  Evolution by Non-convex Energy Functionals ............ 200
   6.6  Enhancing ............................................. 202

7  Inverse Scale Spaces ....................................... 205
   7.1  Iterative Tikhonov Regularization ..................... 206
   7.2  Iterative Regularization with Bregman Distances ....... 209
   7.3  Recent Topics on Evolutionary Equations for Inverse 
        Problems .............................................. 217

Part III Mathematical Foundations

8  Functional Analysis ........................................ 221
   8.1  General Topology ...................................... 221
   8.2  Locally Convex Spaces ................................. 224
   8.3  Bounded Linear Operators and Functionals .............. 227
   8.4  Linear Operators in Hilbert Spaces .................... 231
   8.5  Weak and Weak* Topologies ............................. 234
   8.6  Spaces of Differentiable Functions .................... 237

9  Weakly Differentiable Functions ............................ 239
   9.1  Measure and Integration Theory ........................ 239
   9.2  Distributions and Distributional Derivatives .......... 248
   9.3  Geometrical Properties of Functions and Domains ....... 250
   9.4  Sobolev Spaces ........................................ 254
   9.5  Convolution ........................................... 261
   9.6  Sobolev Spaces of Fractional Order .................... 262
   9.7  Bochner Spaces ........................................ 263
   9.8  Functions of Bounded Variation ........................ 265

10 Convex Analysis and Calculus of Variations ................. 273
   10.1 Convex and Lower Semi-continuous Functionals .......... 274
   10.2 Fenchel Duality and Subdifferentiability .............. 276
   10.3 Duality Mappings ...................................... 280
   10.4 Differentiability of Functionals and Operators ........ 281
   10.5 Derivatives of Integral Functionals on Lp(Ω) .......... 284

References .................................................... 287

Nomenclature .................................................. 309

Index ......................................................... 315


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:22:00 2019. Размер: 8,947 bytes.
Посещение N 1906 c 09.03.2011