Kiselev S.P. Foundations of fluid mechanics with applications: problem solving using Mathematica (Boston, 1999). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаKiselev S.P. Foundations of fluid mechanics with applications: problem solving using Mathematica® / S.P.Kiselev, E.V.Vorozhtsov, V.M.Fomin. - Boston: Birkhäuser, 1999. - xiv, 575 p.: ill. - (Modeling and simulation in science, engineering, and technology). - Incl. bibl. ref. - Ind.: p.565-575. - ISBN 0-8176-3995-0
 

Место хранения: 02 | Отделение ГПНТБ СО РАН | Новосибирск

Оглавление / Contents
 
Preface ........................................................ xi

1  Definitions of Continuum Mechanics ........................... 1
   1.1  Vectors and Tensors ..................................... 1
        1.1.1  Covariant Differentiation ........................ 5
        1.1.2  The Levi-Civita Tensor ........................... 7
        1.1.3  Differential Operations .......................... 9
        1.1.4  Physical Components of Vectors and Tensors ....... 9
        1.1.5  Eigenvalues and Eigenvectors of a Symmetric 
               Tensor .......................................... 10
        1.1.6  The Ostrogradsky-Gauss Theorem .................. 12
        1.1.7  The Stokes Theorem .............................. 14
        1.1.8  The Weyl Formula ................................ 15
   1.2  Eulerian and Lagrangian Description of a Continuum:
        Strain Tensor .......................................... 24
        1.2.1  Lagrangian and Eulerian Description of
               a Continuum ..................................... 24
        1.2.2  Strain Tensor ................................... 28
        1.2.3  A Condition for Compatibility of Deformations ... 35
        1.2.4  Rate-of-Strain Tensor: Cauchy-Helmholtz 
               Theorem ......................................... 37
   1.3  Stress Tensor .......................................... 55
        1.3.1  The Cauchy Stress Tensor in the Accompanying
               Coordinate System ............................... 55
        1.3.2  Piola-Kirchhoff Stress Tensors in 
               the Reference Frame and in the Eulerian 
               Coordinates ..................................... 59
        1.3.3  Principal Values and Invariants of the Stress
               Tensor .......................................... 61
        1.3.4  Differentiation of the Stress Tensor with 
               Respect to Time ................................. 63
   References .................................................. 73
2  Fundamental Principles and Laws of Continuum Mechanics ...... 75
   2.1  Equations of Continuity, Motion, and Energy for a
        Continuum .............................................. 75
        2.1.1  Continuity Equation ............................. 76
        2.1.2  Equations of Motion and of Momentum Moment ...... 78
        2.1.3  The Energy Conservation Law: The First and 
               Second Laws of Thermodynamics ................... 84
        2.1.4  Equation of State (General Relations) ........... 92
        2.1.5  Equations of an Ideal and Viscous, Heat-
               Conducting Gas .................................. 95
   2.2  The Hamilton-Ostrogradsky's Variational Principle in
        Continuum Mechanics ................................... 115
        2.2.1  Euler-Lagrange Equations in Lagrangian 
               Coordinates .................................... 115
        2.2.2  Hamilton's Equations in Lagrangian
               Coordinates .................................... 121
        2.2.3  Euler-Lagrange Equations in Eulerian 
               Coordinates and Murnaghan's Formula ............ 125
   2.3  Conservation Laws for Energy and Momentum in
        Continuum Mechanics ................................... 135
        2.3.1  Conservation Laws in Cartesian Coordinates ..... 135
        2.3.2  Conservation Laws in an Arbitrary Coordinate
               System ......................................... 144
   References ................................................. 152
3  The Features of the Solutions of Continuum Mechanics 
   Problems ................................................... 155
   3.1  Similarity and Dimension Theory in Continuum 
        Mechanics ............................................. 155
   3.2  The Characteristics of Partial Differential
        Equations ............................................. 163
   3.3  Discontinuity Surfaces in Continuum Mechanics ......... 171
        References ............................................ 185
4  Ideal Fluid ................................................ 187
   4.1  Integrals of Motion Equations of Ideal Fluid and 
        Gas ................................................... 187
        4.1.1  Motion Equations in the Gromeka-Lamb Form ...... 188
        4.1.2  The Bernoulli Integral ......................... 188
        4.1.3  The Lagrange Integral .......................... 189
   4.2  Planar Irrotational Steady Motions of an Ideal
        Incompressible Fluid .................................. 193
        4.2.1  The Governing Equations of Planar Flows ........ 193
        4.2.2  The Potential Flow past the Cylinder ........... 202
        4.2.3  The Method of Conformal Mappings ............... 208
        4.2.4  The Problem of the Flow around a Slender
               Profile ........................................ 219
   4.3  Axisymmetric and Three-Dimensional Potential Ideal
        Incompressible Fluid Flows ............................ 223
        4.3.1  Axially Symmetric Flows ........................ 223
        4.3.2  The Method of Sources and Sinks ................ 231
        4.3.3  The Program prog4-5.nb ......................... 233
        4.3.4  The Transverse Flow around the Body of 
               Revolution: The Program prog4-6.nb ............. 235
   4.4  Nonstationary Motion of a Solid in the Fluid .......... 242
        4.4.1  Formulation of a Problem on Nonstationary 
               Body Motion in Ideal Fluid ..................... 242
        4.4.2  The Hydrodynamic Reactions at the Body 
               Motion ......................................... 244
        4.4.3  Equations of Solid Motion in a Fluid under 
               the Action of Given Forces ..................... 247
   4.5  Vortical Motions of Ideal Fluid ....................... 250
        4.5.1  The Theorems of Thomson, Lagrange, and 
               Helmholtz ...................................... 250
        4.5.2  Motion Equations in Friedmann's Form ........... 257
        4.5.3  The Biot-Savart Formulas and the Straight
               Vortex Filament ................................ 258
   References ................................................. 265
5  Viscous Fluid .............................................. 267
   5.1  General Equations of Viscous Incompressible Fluid ..... 268
        5.1.1  The Navier-Stokes Equations .................... 268
        5.1.2  Formulation of Problems for the System of the
               Navier-Stokes Equations ........................ 275
   5.2  Viscous Fluid Flows at Small Reynolds Numbers ......... 276
        5.2.1  Exact Solutions of the System of Equations
               for a Viscous Fluid ............................ 277
        5.2.2  Viscous Fluid Motion between Two Rotating 
               Coaxial Cylinders .............................. 280
        5.2.3  The Viscous Incompressible Fluid Flow around
               a Sphere at Small Reynolds Numbers ............. 282
   5.3  Viscous Fluid Flows at Large Reynolds Numbers ......... 287
        5.3.1  Prandtl's Theory of Boundary Layers ............ 288
        5.3.2  Boundary Layer of a Flat Plate ................. 293
   5.4  Turbulent Fluid Flows ................................. 298
        5.4.1  Basic Properties of Turbulent Flows ............ 298
        5.4.2  Laminar Flow Stability and Transition to 
               Turbulence ..................................... 300
        5.4.3  Turbulent Fluid Flow ........................... 302
   References ................................................. 309
6  Gas Dynamics ............................................... 311
   6.1  One-Dimensional Stationary Gas Flows .................. 311
        6.1.1  Governing Equations for Quasi-One-Dimensional
               Gas Flow ....................................... 311
        6.1.2  Gas Motion in a Variable Section Duct: 
               Elementary Theory of the Laval Nozzle .......... 313
        6.1.3  Planar Shock Wave in Ideal Gas ................. 321
        6.1.4  Shock Wave Structure in Gas .................... 329
   6.2  Nonstationary One-Dimensional Flows of Ideal Gas ...... 334
        6.2.1  Planar Isentropic Waves ........................ 334
        6.2.2  Gradient Catastrophe and Shock Wave 
               Formation ...................................... 342
   6.3  Planar Irrotational Ideal Gas Motion (Linear 
        Approximation) ........................................ 346
        6.3.1  Governing Equations and Their Linearization .... 346
        6.3.2  The Problem of the Flow around a Slender 
               Profile ........................................ 348
   6.4  Planar Irrotational Stationary Ideal Gas Flow
        (General Case) ........................................ 354
        6.4.1  Characteristics of Stationary Irrotational
               Flows of Ideal Gas, Simple Wave: The Prandtl-
               Meyer Flow ..................................... 355
        6.4.2  Chaplygin's Equations and Method ............... 366
        6.4.3  Oblique Shock Waves ............................ 377
        6.4.4  Interference of Stationary Shock Waves ......... 382
   6.5  The Fundamentals of the Gasdynamic Design 
        Technology ............................................ 386
        6.5.1  The Basic Algorithm ............................ 387
        6.5.2  The Superposition Procedure .................... 391
        6.5.3  The Complement Procedure ....................... 395
   References ................................................. 399
7  Multiphase Media ........................................... 401
   7.1  Mathematical Models of Multiphase Media ............... 403
        7.1.1  General Equations of the Mechanics of 
               Multiphase Media ............................... 403
        7.1.2  Equations of a Two-Phase Medium of the Type
               of Gas-Solid Particles ......................... 407
        7.1.3  Equations of a Bicomponent Medium of Gas
               Mixture Type ................................... 415
   7.2  Correctness of the Cauchy Problem: Relations at
        Discontinuities in Multiphase Media ................... 417
        7.2.1  The Characteristics of a System of Equations
               for Gas-Particle Mixtures and Correctness of 
               the Cauchy Problem ............................. 417
        7.2.2  Jump Relations ................................. 431
   7.3  Quasi-One-Dimensional Flows of a Gas-Particle 
        Mixture in Laval Nozzles .............................. 442
        7.3.1  The Equations of the Quasi-One-Dimensional 
               Flow of a Gas-Particle Mixture ................. 442
        7.3.2  The Flow of a Gas-Particle Mixture in the 
               Laval Nozzle with Small Velocity and 
               Temperature Lags of Particles .................. 447
   7.4  The Continual-Discrete Model and Caustics in the
        Pseudogas of Particles ................................ 456
        7.4.1  The Equations of the Continual-Discrete Model
               of a Gas-Particle Mixture at a Small Volume
               Concentration of Particles ..................... 456
        7.4.2  Investigation of Caustics in the Pseudogas
               of Particles ................................... 460
   7.5  Nonstationary Processes in Gas-Particle Mixtures ...... 471
        7.5.1  Interaction of a Shock Wave with a Cloud
               of Particles ................................... 471
        7.5.2  Acoustic Approximation in the Problem of
               Shock Wave Interaction with a Particle's 
               Cloud at a Small Volume Concentration .......... 478
   7.6  The Flows of Heterogeneous Media without Regard for
        Inertial Effects ...................................... 486
        7.6.1  The Brownian Motion of Particles in a Fluid .... 486
        7.6.2  Fluid Filtration in a Porous Medium ............ 493
   7.7  Wave Processes in Bubbly Liquids ...................... 500
        7.7.1  Equations of the Motion of a Bubbly Liquid ..... 500
        7.7.2  Equations for Weak Nonlinear Disturbances in
               Bubbly Liquids ................................. 507
        7.7.3  Progressive, Weak Nonlinear Waves in Bubbly 
               Liquids ........................................ 512
   References ................................................. 522

Appendix A: Mathematica Functions ............................. 526

Appendix B: Glossary of Programs .............................. 550

Index ......................................................... 565


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:22:00 2019. Размер: 16,731 bytes.
Посещение N 2205 c 09.03.2011