Dunajski M. Solitons, instantons, and twistors (Oxford, 2010). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаDunajski M. Solitons, instantons, and twistors. - Oxford: Oxford University Press, 2010. - xi, 359 p.: ill. - Ref.: p.344-354. - Ind.: 355-359. - ISBN 978-0-19-857062-2
 

Место хранения: 013 | Институт математики СО РАН | Новосибирск | Библиотека

Оглавление / Contents
 
List of Figures ............................................... xii
List of Abbreviations ........................................ xiii

1  Integrability in classical mechanics ......................... 1
   1.1  Hamiltonian formalism ................................... 1
   1.2  Integrability and action-angle variables ................ 4
   1.3  Poisson structures ..................................... 14
2  Soliton equations and the inverse scattering transform ...... 20
   2.1  The history of two examples ............................ 20
        2.1.1  A physical derivation of KdV .................... 21
        2.1.2  Backlund transformations for the Sine-Gordon 
               equation ........................................ 24
   2.2  Inverse scattering transform for KdV ................... 25
        2.2.1  Direct scattering ............................... 28
        2.2.2  Properties of the scattering data ............... 29
        2.2.3  Inverse scattering .............................. 30
        2.2.4  Lax formulation ................................. 31
        2.2.5  Evolution of the scattering data ................ 32
   2.3  Reflectionless potentials and solitons ................. 33
        2.3.1  One-soliton solution ............................ 34
        2.3.2  N-soliton solution .............................. 35
        2.3.3  Two-soliton asymptotics ......................... 36
3  Hamiltonian formalism and zero-curvature 
   representation .............................................. 43
   3.1  First integrals ........................................ 43
   3.2  Hamiltonian formalism .................................. 46
        3.2.1  Bi-Hamiltonian systems .......................... 46
   3.3  Zero-curvature representation .......................... 48
        3.3.1  Riemann-Hilbert problem ......................... 50
        3.3.2  Dressing method ................................. 52
        3.3.3  From Lax representation to zero curvature ....... 54
   3.4  Hierarchies and finite-gap solutions ................... 56
4  Lie symmetries and reductions ............................... 64
   4.1  Lie groups and Lie algebras ............................ 64
   4.2  Vector fields and one-parameter groups of
        transformations ........................................ 67
   4.3  Symmetries of differential equations ................... 71
        4.3.1  How to find symmetries .......................... 74
        4.3.2  Prolongation formulae ........................... 75
   4.4  Painlevé equations ..................................... 78
        4.4.1  Painlevé test ................................... 82
5  Lagrangian formalism and field theory ....................... 85
   5.1  A variational principle ................................ 85
        5.1.1  Legendre transform .............................. 87
        5.1.2  Symplectic structures ........................... 88
        5.1.3  Solution space .................................. 89
   5.2  Field theory ........................................... 90
        5.2.1  Solution space and the geodesic
               approximation ................................... 92
   5.3  Scalar kinks ........................................... 93
        5.3.1  Topology and Bogomolny equations ................ 96
        5.3.2  Higher dimensions and a scaling argument ........ 98
        5.3.3  Homotopy in field theory ........................ 99
   5.4  Sigma model lumps ..................................... 100
6  Gauge field theory ......................................... 105
   6.1  Gauge potential and Higgs field ....................... 106
        6.1.1  Scaling argument ............................... 108
        6.1.2  Principal bundles .............................. 109
   6.2  Dirac monopole and flux quantization .................. 110
        6.2.1  Hopf fibration ................................. 112
   6.3  Non-abelian monopoles ................................. 114
        6.3.1  Topology of monopoles .......................... 115
        6.3.2  Bogomolny-Prasad-Sommerfeld (BPS) limit ........ 116
   6.4  Yang-Mills equations and instantons ................... 119
        6.4.1  Chern and Chern-Simons forms ................... 120
        6.4.2  Minimal action solutions and the anti-self-
               duality condition .............................. 122
        6.4.3  Ansatz for A5D fields .......................... 123
        6.4.4  Gradient flow and classical mechanics .......... 124
7  Integrability of ASDYM and twistor theory .................. 129
   7.1  Lax pair .............................................. 129
        7.1.1   Geometric interpretation ...................... 132
   7.2  Twistor correspondence ................................ 133
        7.2.1  History and motivation ......................... 133
        7.2.2  Spinor notation ................................ 137
        7.2.3  Twistor space .................................. 139
        7.2.4  Penrose-Ward correspondence .................... 141
8  Symmetry reductions and the integrable chiral model ........ 149
   8.1  Reductions to integrable equations .................... 149
   8.2  Integrable chiral model ............................... 154
        8.2.1  Soliton solutions .............................. 157
        8.2.2  Lagrangian formulation ......................... 165
        8.2.3  Energy quantization of time-dependent
               unitons ........................................ 168
        8.2.4  Moduli space dynamics .......................... 173
        8.2.5  Mini-twistors .................................. 181
9  Gravitational instantons ................................... 191
   9.1  Examples of gravitational instantons .................. 191
   9.2  Anti-self-duality in Riemannian geometry .............. 195
        9.2.1  Two-component spinors in Riemannian 
               signature ...................................... 198
   9.3  Hyper-Kähler metrics .................................. 202
   9.4  Multi-centred gravitational instantons ................ 206
        9.4.1  Belinskii-Gibbons-Page-Pope class .............. 210
   9.5  Other gravitational instantons ........................ 212
        9.5.1  Compact gravitational instantons and КЗ ........ 215
   9.6  Einstein-Maxwell gravitational instantons ............. 216
   9.7  Kaluza-Klein monopoles ................................ 221
        9.7.1  Kaluza-Klein solitons from Einstein-Maxwell
               instantons ..................................... 222
        9.7.2  Solitons in higher dimensions .................. 226
10 Anti-self-dual conformal structures ........................ 229
   10.1 α-surfaces and anti-self-duality ...................... 230
   10.2 Curvature restrictions and their Lax pairs ............ 231
        10.2.1 Hyper-Hermitian structures ..................... 232
        10.2.2 ASD Kähler structures .......................... 234
        10.2.3 Null-Kähler structures ......................... 236
        10.2.4 ASD Einstein structures ........................ 237
        10.2.5 Hyper-Kähler structures and heavenly
               equations ...................................... 238
   10.3 Symmetries ............................................ 246
        10.3.1 Einstein-Weyl geometry ......................... 246
        10.3.2 Null symmetries and projective structures ...... 253
        10.3.3 Dispersionless integrable systems .............. 256
   10.4 ASD conformal structures in neutral signature ......... 262
        10.4.1 Conformal compactification ..................... 263
        10.4.2 Curved examples ................................ 263
   10.5 Twistor theory ........................................ 265
        10.5.1 Curvature restrictions ......................... 270
        10.5.2 ASD Ricci-flat metrics ......................... 272
        10.5.3 Twistor theory and symmetries .................. 283

Appendix A: Manifolds and topology ............................ 287
   A.1  Lie groups ............................................ 290
   A.2  Degree of a map and homotopy .......................... 294
        A.2.1  Homotopy ....................................... 296
        A.2.2  Hermitian projectors ........................... 298

Appendix B: Complex analysis .................................. 300
   B.1  Complex manifolds ..................................... 301
   B.2  Holomorphic vector bundles and their sections ......... 303
   B.3  Cech cohomology ....................................... 307
        B.3.1  Deformation theory ............................. 308

Appendix C: Overdetermined PDEs ............................... 310
   C.1  Introduction .......................................... 310
   C.2  Exterior differential system and Frobenius theorem .... 314
   C.3  Involutivity .......................................... 320
   С.4  Prolongation .......................................... 324
        С.4.1  Differential invariants ........................ 326
   С.5  Method of characteristics ............................. 332
   C.6  Cartan-Kähler theorem ................................. 335

References .................................................... 344

Index ......................................................... 355


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:21:58 2019. Размер: 13,157 bytes.
Посещение N 1722 c 09.03.2011