Ignaczak J. Thermoelasticity with finite wave speeds (Oxford; New York, 2010). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаIgnaczak J. Thermoelasticity with finite wave speeds / J.Ignaczak, M.Ostoja-Starzewski. - Oxford; New York: Oxford University Press, 2010. - xviii, 413 p.: ill. - (Oxford mathematical monographs). - Ref.: p. 383-403. - Name ind.: p.404-407. - Sub. ind.: p.408-413. - ISBN 978-0-19-954164-5
 

Оглавление / Contents
 
PREFACE ......................................................... x
INTRODUCTION .................................................. xii

1  Fundamentals of linear thermoelasticity with finite wave
   speeds ....................................................... 1
   1.1  Fundamentals of classical thermoelasticity .............. 1
        1.1.1  Basic considerations ............................. 1
        1.1.2  Global balance law in terms of (ui, fig.1) ........... 7
        1.1.3  Global balance law in terms of (Sij,qi) ........... 9
   1.2  Fundamentals of thermoelasticity with one relaxation 
        time ................................................... 11
        1.2.1  Basic considerations ............................ 11
        1.2.2  Global balance law in terms of (ui, fig.1) .......... 14
        1.2.3  Global balance law in terms of (Sij,qi) .......... 15
   1.3  Fundamentals of thermoelasticity with two relaxation
        times .................................................. 18
        1.3.1  Basic considerations ............................ 18
        1.3.2  Global balance law in terms of (ui, fig.1) .......... 25
        1.3.3  Global balance law in terms of (Sij, fig.1) ......... 26
   
2  Formulations of initial-boundary value problems ............. 30
   2.1  Conventional and non-conventional characterization 
        of a thermoelastic process ............................. 30
        2.1.1  Two mixed initial-boundary value problems in 
               the L-S theory .................................. 31
        2.1.2  Two mixed initial-boundary value problems in 
               the G-L theory .................................. 33
   2.2  Relations among descriptions of a thermoelastic 
        process in terms of various pairs of thermomechanical
        variables .............................................. 34
   
3  Existence and uniqueness theorems ........................... 37
   3.1  Uniqueness theorems for conventional and non-
        conventional thermoelastic processes ................... 37
   3.2  Existence theorem for a non-conventional
        thermoelastic process .................................. 43
   
4  Domain of influence theorems ................................ 51
   4.1  The potential-temperature problem in the Lord-Shulman
        theory ................................................. 51
   4.2  The potential-temperature problem in the Green-
        Lindsay theory ......................................... 59
   4.3  The natural stress-heat-flux problem in the Lord-
        Shulman theory ......................................... 65
   4.4  The natural stress-temperature problem in the Green-
        Lindsay theory ......................................... 71
   4.5  The displacement-temperature problem for an 
        inhomogeneous anisotropic body in the L-S and G-L
        theories ............................................... 80
        4.5.1  A thermoelastic wave propagating in an
               inhomogeneous anisotropic L-S model ............. 80
        4.5.2  A thermoelastic wave propagating in an
               inhomogeneous anisotropic G-L model ............. 83

5  Convolutional variational principles ........................ 86
   5.1  Alternative descriptions of a conventional
        thermoelastic process in the Green-Lindsay theory ...... 86
   5.2  Variational principles for a conventional
        thermoelastic process in the Green-Lindsay theory ...... 93
   5.3  Variational principle for a non-conventional
        thermoelastic process in the Lord-Shulman theory ...... 103
   5.4  Variational principle for a non-conventional
        thermoelastic process in the Green-Lindsay theory ..... 106

6  Central equation of thermoelasticity with finite wave
   speeds ..................................................... 111
   6.1  Central equation in the Lord-Shulman and Green-
        Lindsay theories ...................................... 111
   6.2  Decomposition theorem for a central equation of
        Green-Lindsay theory. Wave-like equations with a
        convolution ........................................... 114
   6.3  Speed of a fundamental thermoelastic disturbance in
        the space of constitutive variables ................... 127
   6.4  Attenuation of a fundamental thermoelastic
        disturbance in the space of constitutive variables .... 139
        6.4.1  Behavior of functions fig.21.2 for a fixed
               relaxation time to ............................. 140
        6.4.2  Behavior of functions fig.21.2 for a fixed fig.4 ........ 141
   6.5  Analysis of the convolution coefficient and kernel .... 143
        6.5.1  Analysis of fig.3 at fixed t0 ...................... 143
        6.5.2  Analysis of fig.3 at fixed fig.4 ...................... 144
        6.5.3  Analysis of the convolution kernel ............. 146

7  Exact aperiodic-in-time solutions of Green—Lindsay
   theory ..................................................... 152
   7.1  Fundamental solutions for a 3D bounded domain ......... 152
   7.2  Solution of a potential-temperature problem for a 3D
        bounded domain ........................................ 164
   7.3  Solution for a thermoelastic layer .................... 170
   7.4  Solution of Nowacki type; spherical wave of
        a negative order ...................................... 175
   7.5  Solution of Danilovskaya type; plane wave of a
        negative order ........................................ 192
   7.6  Thermoelastic response of a half-space to laser
        irradiation ........................................... 197

8  Kirchhoff-type formulas and integral equations in Green-
   Lindsay theory ............................................. 217
   8.1  Integral representations of fundamental solutions ..... 217
   8.2  Integral equations for fundamental solutions .......... 221
   8.3  Integral representation of a solution to a central
        system of equations ................................... 222
   8.4  Integral equations for a potential-temperature
        problem ............................................... 232

9  Thermoelastic polynomials .................................. 241
   9.1  Recurrence relations .................................. 241
   9.2  Differential equation ................................. 249
   9.3  Integral relation ..................................... 252
   9.4  Associated thermoelastic polynomials .................. 254

10 Moving discontinuity surfaces .............................. 257
   10.1 Singular surfaces propagating in a thermoelastic
         medium; thermoelastic wave of order n (fig.5 0) .......... 257
   10.2 Propagation of a plane shock wave in a thermoelastic
        half-space with one relaxation time ................... 261
   10.3 Propagation of a plane acceleration wave in
        a thermoelastic half-space with two relaxation
        times ................................................. 270

11 Time-periodic solutions .................................... 280
   11.1 Plane waves in an infinite thermoelastic body with
        two relaxation times .................................. 280
   11.2 Spherical waves produced by a concentrated source of
        heat in an infinite thermoelastic body with two
        relaxation times ...................................... 294
   11.3 Cylindrical waves produced by a line heat source in
        an infinite thermoelastic body with two relaxation
        times ................................................. 302
   11.4 Integral representation of solutions and radiation
        conditions in the Green-Lindsay theory ................ 310
        11.4.1 Integral representations and radiation
               conditions for the fundamental solution in
               the Green-Lindsay theory ....................... 310
        11.4.2 Integral representations and radiation
               conditions for the potential-temperature
               solution in the Green-Lindsay theory ........... 314

12 Physical aspects and applications of hyperbolic
   thermoelasticity ........................................... 321
   12.1 Heat conduction ....................................... 321
        12.1.1 Physics viewpoint and other theories ........... 321
        12.1.2 Consequence of Galilean invariance ............. 323
        12.1.3 Consequence of continuum thermodynamics ........ 325
   12.2 Thermoelastic helices and chiral media ................ 329
        12.2.1 Homogeneous case ............................... 329
        12.2.2 Heterogeneous case and homogenization .......... 332
        12.2.3 Plane waves in non-centrosymmetric micropolar
               thermoelasticity ............................... 333
   12.3 Surface waves ......................................... 336
   12.4 Thermoelastic damping in nanomechanical resonators .... 339
        12.4.1 Flexural vibrations of a thermoelastic
               Bernoulli-Euler beam ........................... 339
        12.4.2 Numerical results and discussion ............... 342
   12.5 Fractional calculus and fractals in
        thermoelasticity ...................................... 343
        12.5.1 Anomalous heat conduction ...................... 343
        12.5.2 Fractal media .................................. 346

13 Non-linear hyperbolic rigid heat conductor of the Coleman
   type ....................................................... 352
   13.1 Basic field equations for a ID case ................... 352
   13.2 Closed-form solutions ................................. 355
        13.2.1 Closed-form solution to a time-dependent
               heat-conduction Cauchy problem ................. 355
        13.2.2 Travelling-wave solutions ...................... 358
   13.3 Asymptotic method of weakly non-linear geometric
        optics applied to the Coleman heat conductor .......... 366

REFERENCES .................................................... 383

ADDITIONAL REFERENCES ......................................... 392

NAME INDEX .................................................... 404

SUBJECT INDEX ................................................. 408


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:21:58 2019. Размер: 14,705 bytes.
Посещение N 1712 c 01.03.2011