Preface ........................................................ XV
List of Contributors .......................................... XIX
1 Gecko-Inspired Nanomaterials ................................. 7
Christian Greiner
1.1 The Gecko and Its Adhesion Capabilities ................. 1
1.1.1 What are Setae? .................................. 1
1.1.2 Walking on the Ceiling ........................... 3
1.2 The Physics of Gecko Adhesion ........................... 4
1.2.1 Contact Splitting ................................ 4
1.2.2 Adhesion Design Maps ............................. 6
1.3 Fabrication Methods for Gecko-Inspired Adhesives ........ 8
1.3.1 Soft-Molding ..................................... 8
1.3.2 Nanostructured Adhesive Surfaces ................ 11
1.3.2.1 Hot Embossing .......................... 11
1.3.2.2 Filling Nanoporous Membranes ........... 11
1.3.2.3 Electron-Beam Lithography .............. 12
1.3.2.4 Carbon Nanotubes ....................... 13
1.3.2.5 Drawing Polymer Fibers ................. 13
1.3.2.6 Hierarchical Adhesive Surfaces ......... 14
1.3.2.7 3-D Structured Adhesive Surfaces ....... 16
1.3.2.8 Switchable Adhesive Surfaces Made
from Responsive Materials .............. 17
1.4 Measuring Adhesion ..................................... 17
1.4.1 What Actually is Measured? ...................... 17
1.4.2 How is Adhesion Measured? ....................... 20
1.5 What Have We Learned About Fibrillar Adhesives? ........ 22
1.5.1 Contact Splitting ............................... 22
1.5.2 Aspect Ratio .................................... 23
1.5.3 Tip Geometry .................................... 24
1.5.4 Young's Modulus ................................. 25
1.5.5 Backing Layer ................................... 25
1.5.6 Tilt Angle ...................................... 26
1.5.7 Hierarchy ....................................... 27
1.5.8 Experimental Parameters that Influence
Measurements .................................... 28
1.5.8.1 Adhesion Tests: Indentation versus
Peeling ................................ 28
1.5.8.2 Indenter Geometry ...................... 29
1.5.8.3 Humidity ............................... 29
1.5.9 Other Approaches and Factors .................... 30
1.6 Applications in the Life Sciences ...................... 30
1.7 Summary and Future Perspectives ........................ 33
References .................................................. 34
2 Tooth-Inspired Nanocomposites ............................... 41
Janet Moradian-Oldak and Yuwei Fan
2.1 Introduction ........................................... 41
2.1.1 Biologically Formed Nanocomposites .............. 42
2.1.2 Nanocomposite Synthesis ......................... 44
2.2 Enamel ................................................. 45
2.2.1 Enamel Hierarchical Structure ................... 46
2.2.2 Molecular Mechanisms in Amelogenesis (Enamel
Formation) ...................................... 47
2.2.2.1 Amelogenin ............................. 48
2.2.2.2 Other Enamel Proteins .................. 50
2.2.3 Synthesis of Enamel-Like Organized Apatite
Crystals ........................................ 52
2.2.4 Amelogenin-Based Nanocomposites ................. 54
2.2.4.1 Controlled Crystallization of Apatite
by Amelogenin .......................... 54
2.2.4.2 Biomimetic Coatings Using Simulated
Body Fluid ............................. 56
2.2.4.3 Amelogenin-Apatite Coatings Using
Electrodeposition (ELD) ................ 57
2.2.4.4 Bioinspired Remineralization of
Enamel ................................. 61
2.3 Dentin ................................................. 64
2.3.1 Types of Dentin ................................. 65
2.3.2 Dentin Hierarchical Structure ................... 65
2.3.3 Molecular Mechanisms in Dentinogenesis (Dentin
Formation) ...................................... 66
2.3.3.1 Collagen ............................... 67
2.3.3.2 Noncollagenous Extracellular Matrix
Proteins ............................... 67
2.3.4 Collagen-Calcium Phosphate Nanocomposites ....... 69
2.3.4.1 Biomimetic Collagen Mineralization
Using SBF .............................. 69
2.3.4.2 Bioinspired Mineralization of
Collagen ............................... 71
2.3.4.3 Collagen-Apatite Coating in Modified
SBF .................................... 73
2.3.4.4 Collagen-Apatite Coating by
Electrodeposition ...................... 73
2.3.5 Dentin Remineralization ......................... 75
2.4 Summary and Future Perspective ......................... 76
Acknowledgments ............................................. 77
Abbreviations ............................................... 77
References .................................................. 78
3 Bioinspired Nanomaterials for Tissue Engineering ............ 89
Andrew P. Loeffler and Peter X. Ma
3.1 Introduction ........................................... 89
3.2 Biomimetic Material Properties ......................... 91
3.2.1 Scaffold Surface and Pore Structure ............. 91
3.2.2 Scaffold Biodegradability ....................... 92
3.2.3 Scaffold Mechanical Properties .................. 93
3.2.4 Scaffold Biocompatibility and Cellular
Interactions .................................... 94
3.3 Nanofiber Scaffold Fabrication Methods ................. 94
3.3.1 Electrospinning ................................. 95
3.3.2 Self-Assembly ................................... 97
3.3.3 Phase Separation ................................ 99
3.3.3.1 Predesigned Macropores ................ 100
3.3.3.2 Solid Freeform Fabrication ............ 101
3.4 Modification of Nanofibrous Scaffolds ................. 103
3.4.1 Scaffold Surface Modifications ................. 104
3.4.2 Inorganic Composite Scaffolds .................. 105
3.4.3 Factor Delivery Scaffolds ...................... 107
3.5 Biological Effects of Nanofibers ...................... 110
3.5.1 Cell Attachment and Morphology ................. 110
3.5.2 Proliferation .................................. 112
3.5.3 Differentiation and Tissue Formation ........... 113
3.6 Conclusions ........................................... 115
References ................................................. 116
4 Nature-Inspired Molecular Machines ......................... 725
Aitan Lawit, Bala Krishna Juluri, and Tony Jun Huang
4.1 Introduction .......................................... 125
4.2 Biological Molecular Machines ......................... 125
4.2.1 Kinesin and Myosin ............................. 126
4.2.2 ATPase ......................................... 132
4.2.3 DNA ............................................ 134
4.3 Biomimetic Molecular Machines ......................... 136
4.3.1 Rotaxanes, Catenanes, and Pseudorotaxanes ...... 137
4.3.2 Nanocars ....................................... 142
4.3.3 Polyelectrolyte Brushes ........................ 143
4.3.4 Light-Driven Molecular Motors .................. 145
4.4 Conclusions ........................................... 146
4.5 Future Perspective .................................... 147
References ................................................. 147
5 Biomimetic and Bioinspired Self-Assembled Peptide
Nanostructures ............................................. 157
Francesco Pampaloni and Andrea Masotti
5.1 Introduction .......................................... 151
5.1.1 Some Key Principles of Biological Self-
Assembly ....................................... 151
5.1.2 Biological Self-Assembly in Nanotechnology ..... 152
5.2 Peptide-Based Self-Assembling Nanomaterials ........... 152
5.2.1 Alpha-Helical Coiled-Coil ...................... 153
5.2.1.1 Self-Assembly Mechanism of Coiled-
Coils ................................. 153
5.2.1.2 De Novo-Designed α-Helix Coiled-Coil
Nanofibers ............................ 154
5.2.2 β-Sheet Structures ............................. 158
5.2.2.1 Amyloid Fibrils ....................... 158
5.2.2.2 De Novo-Designed [5-Sheet Materials ... 160
5.2.2.3 Collagen-Based Assemblies ............. 162
5.3 Matrices for Tissue Engineering and Regenerative
Medicine .............................................. 164
5.3.1 Peptide-Amphiphile Nanofiber Matrices .......... 166
5.3.1.1 Molecular Structure ................... 166
5.3.1.2 Self-Assembly and Physical-
Biochemical Properties ................ 166
5.3.1.3 Applications in 3-D Cell Cultures ..... 168
5.3.1.4 Applications in Regenerative
Medicine .............................. 169
5.3.2 Beta-Sheet Nanofiber Matrices ("Designer
Peptides") ..................................... 170
5.3.2.1 Molecular Structure ................... 170
5.3.2.2 Self-Assembly Mechanism and
Biophysical Properties ................ 172
5.3.2.3 Applications in 3-D Cell Cultures ..... 172
5.3.2.4 Applications in Regenerative
Medicine .............................. 173
5.3.2.5 Local Delivery of Molecules ........... 174
5.3.3 Beta-Hairpin Peptides .......................... 175
5.3.3.1 Molecular Structure ................... 175
5.3.3.2 Self-Assembly Mechanism and
Biophysical Properties ................ 176
5.3.3.3 Applications in 3-D Cell Cultures ..... 177
5.3.3.4 Applications in Regenerative
Medicine .............................. 177
5.4 Virus-Based and Virus-Inspired Nanomaterials .......... 177
5.4.1.1 Nanomechanical Properties of Virus
Capsids ............................... 178
5.4.2 Applications of Viruses in Nanotechnology ...... 180
5.4.2.1 Virus-Based Nanostructures and Self-
Organizing Assemblies ................. 181
5.4.2.2 Virus-Like Particles Encapsulating
Non-Genetic Molecular Cargos .......... 185
5.4.2.3 Synthetic Viruses ..................... 187
5.4.2.4 Functionalization of Virus Capsids .... 189
5.4.2.5 Viruses as Templates for Programmed
Synthesis of Nanomaterials ............ 193
5.5 Biomimetic Nanotubes .................................. 194
5.5.1 Properties of Nanotubes ........................ 194
5.5.2 Peptide and Protein Nanotubes .................. 195
5.5.3 Cellular Microtubules .......................... 198
5.5.3.1 Self-Assembly and Structure of
Microtubules .......................... 198
5.5.3.2 Microtubule Bundles ................... 199
5.5.3.3 Prospect: Insights from MT for
Nanotechnology ........................ 199
Acknowledgments ............................................ 200
Abbreviations .............................................. 200
References ................................................. 202
6 Bioinspired Layered Nanomaterials in Medical Therapy ....... 213
Jin-Ho Choy, Jae-Min Oh, Soo-Jin Choi, and Hyun Jung
6.1 Introduction .......................................... 213
6.2 Features of Layered Nanomaterials ..................... 214
6.2.1 Anionic Layered Nanomaterials: Layered Double
Hydroxides (LDHs) .............................. 214
6.2.2 Cationic Layered Nanomaterials: Clays .......... 215
6.3 Layered Nanomaterials in Medical Applications ......... 218
6.3.1 LDHs ........................................... 218
6.3.1.1 Biomolecule Stabilization ............. 218
6.3.1.2 Drug-Delivery Systems ................. 223
6.3.1.3 Enhanced Cellular Uptake .............. 225
6.3.1.4 Targeted Cellular Delivery ............ 228
6.3.2 Applications of Layered Aluminosilicate and
Clay ........................................... 232
6.4 Toxicity .............................................. 239
6.4.1 Effects of LDH Chemical Composition on
Cytotoxicity ................................... 240
6.4.2 Effects of LDH Particle Size on Cytotoxicity ... 243
6.5 Conclusions ........................................... 245
References ................................................. 246
7 Biological and Biomimetic Synthesis of Metal
Nanomaterials .............................................. 257
Jianping Xie, Yen Nee Tan, and Jim Yang Lee
7.1 Introduction .......................................... 251
7.2 Synthesis of Au/Ag Nanomaterials by Whole Organisms ... 252
7.2.1 Living Organisms as Nanofactories .............. 252
7.2.1.1 Bacteria .............................. 252
7.2.1.2 Plants ................................ 255
7.2.2 Biomass as Nanofactories ....................... 255
7.2.2.1 Intracellular Synthesis ............... 256
7.2.2.2 Extracellular Synthesis ............... 257
7.3 Synthesis of Au/Ag Nanomaterials by Biomolecule
Mixtures .............................................. 258
7.3.1 Intracellular Contents ......................... 258
7.3.2 Secreted Biomolecules from Organisms ........... 263
7.4 Synthesis of Au/Ag Nanomaterials by Proteins .......... 264
7.5 Synthesis of Au/Ag Nanomaterials by Amino Acids/
Peptides .............................................. 267
7.5.1 Amino Acids .................................... 268
7.5.2 Peptides ....................................... 271
7.5.2.1 Combinatorial Screening of Active
Peptides for Nanoparticle Synthesis ... 271
7.5.2.2 Artificial Peptides for Nanoparticle
Synthesis ............................. 272
7.5.2.3 Peptide Films as Reactive Templates ... 274
7.6 Conclusions ........................................... 276
Acknowledgments ............................................ 276
References ................................................. 276
8 Biomimetic Nanosensors and Nanoactuators ................... 283
Mohsen Shahinpoor
8.1 Introduction .......................................... 283
8.2 Three-Dimensional Fabrication of BNNs ................. 286
8.2.1 Manufacturing Methodologies .................... 287
8.2.2 Manufacturing Steps ............................ 287
8.3 Electrically Induced Robotic Actuation ................ 289
8.4 Distributed Nanosensing and Transduction .............. 293
8.5 Modeling and Simulation ............................... 297
Acknowledgments ............................................ 300
References ................................................. 300
9 Biomimetic Nanotechnology .................................. 303
Takahiro Ishizaki, Katsuya Teshima, Sun Hyung Lee,
Yoshitake Masuda, Nagahiro Saito, and Osamu Takai
9.1 Introduction .......................................... 303
9.2 Biocrystal Growth via Environmentally Friendly
Nature-Mimetic Processing ............................. 305
9.2.1 Flux Growth of Hydroxyapatite Crystals ......... 305
9.2.2 Gel Growth of Hydroxyapatite Precursor
(Octacalcium Phosphate) Crystals ............... 308
9.3 Biomimetic Morphology Control of Metal Oxides and
Their Site-Selective Immobilization ................... 310
9.3.1 Morphology Control and Site-Selective
Immobilization of Metal Oxides ................. 310
9.3.2 Liquid-Phase Morphology Control of a Stand-
Alone ZnO Self-Assembled Film .................. 312
9.3.3 Biomimetic Site-Selective Immobilization of
Eu:Y203 ........................................ 318
9.4 Application of Biomimetic Super-Hydrophobic Surfaces
to Micro-patterning of Biomolecules ................... 325
9.4.1 Biomimetic Super-Hydrophobic Surfaces .......... 325
9.4.2 Micropatterning of Bacteria on Biomimetic
Super-Hydrophobic/ Super-Hydrophilic
Surfaces ....................................... 326
9.4.3 Micropatterning of Cells on Biomimetic Super-
Hydrophobic/Super-Hydrophilic Surfaces ......... 331
9.5 Summary and Outlook ................................... 335
References ................................................. 336
10 Biomimetic Approaches to Self-Assembly of Nanomaterials .... 343
Daniel Aili and Bo Liedberg
10.1 Introduction .......................................... 343
10.2 Self-Assembly ......................................... 344
10.3 Polypeptide-Based Nanomaterials ....................... 345
10.3.1 De Novo-Designed Helix-Loop-Helix
Polypeptides ................................... 346
10.3.2 Polypeptides with Controllable Folding
Properties ..................................... 347
10.3.3 Polypeptide Scaffolds for Protein
Recognition .................................... 349
10.3.4 Polypeptide-Based Nanofibers ................... 350
10.3.5 Biomolecular Fibers for the Assembly of
Nanowires ...................................... 353
10.4 Self-Assembly of Hybrid Nanomaterials ................. 353
10.4.1 Gold Nanoparticles ............................. 354
10.4.2 Synthesis of Gold Nanoparticles ................ 355
10.4.3 Optical Properties of Gold Nanoparticles ....... 356
10.4.4 Surface-Functionalization of Gold
Nanoparticles .................................. 358
10.4.5 Biomimetic Self-Assembly of Gold
Nanoparticles .................................. 359
10.5 Nanoparticle Assembly in Biodiagnostics ............... 364
10.6 Conclusions and Outlook ............................... 367
Acknowledgments ............................................ 368
Abbreviations .............................................. 368
References ................................................. 369
11 Biomimetic Artificial Nanostructured Surfaces .............. 379
Emmanuel I. Stratakis and Vassilia Zorba
11.1 Introduction .......................................... 379
11.2 Learning from Nature: Properties of Natural
Nanostructured Surfaces ............................... 380
11.2.1 Wetting Properties ............................. 381
11.2.1.1 Water Repellency and Self-Cleaning
Properties ............................ 383
11.2.1.2 Super-Hydrophilicity .................. 387
11.2.1.3 Increased Water-Supporting Force ...... 387
11.2.1.4 Antifogging ........................... 388
11.2.1.5 Under-Water Air-Retaining Surfaces .... 388
11.2.2 Mechanical and Adhesive Properties ............. 388
11.2.2.1 Dry Adhesion .......................... 388
11.2.2.2 Wet Adhesion .......................... 391
11.2.2.3 Friction Reduction .................... 392
11.2.2.4 Mechanical Stiffness and Stretching ... 392
11.2.3 Optical Properties ............................. 393
11.2.3.1 Structural Coloration ................. 393
11.2.3.2 Broad-Range Coloration and Strong
Flicker Contrast ...................... 397
11.2.3.3 Antireflection Coatings ............... 399
11.2.4 Intelligent Biological Nanostructured
Surfaces ....................................... 400
11.2.4.1 Anisotropic Wettability ............... 401
11.2.4.2 Smart Friction Reduction .............. 401
11.2.4.3 Responsive Coloration Change .......... 402
11.2.4.4 Thermal Response ...................... 402
11.2.4.5 Vapor Response ........................ 402
11.3 Fabrication of Biomimetic Artificial Nanostructures ... 403
11.3.1 Wetting Properties of Biomimetic Artificial
Nanostructures ................................. 404
11.3.1.1 Hierarchical Super-Hydrophobic
Surfaces .............................. 405
11.3.1.2 Hierarchical Super-Hydrophilic
Surfaces .............................. 407
11.3.1.3 Anisotropic Wettability of
Hierarchical Structures ............... 409
11.3.2 Adhesion Properties of Biomimetic Artificial
Nanostructures ................................. 411
11.3.3 Optical Properties of Biomimetic Artificial
Nanostructures ................................. 414
11.3.3.1 Structural Coloration ................. 414
11.3.3.2 Iridescence and Chiral Reflectors ..... 416
11.3.3.3 Antireflection Coatings ............... 416
11.4 Applications of Biomimetic Artificial
Nanostructures ........................................ 419
11.4.1 Wetting Applications ........................... 419
11.4.2 Adhesion Applications .......................... 420
11.4.3 Optical Applications ........................... 421
11.5 Conclusions and Future Outlook ........................ 421
References ................................................. 423
12 Natural and Modified Nanomaterials for Environmental
Applications ............................................... 429
Cuodong Yuan
12.1 Introduction .......................................... 429
12.2 Aluminosilicate Nanomaterials ......................... 431
12.2.1 Occurrence and Structure of Natural
Aluminosilicate Nanomaterials .................. 431
12.2.2 Surface Properties of Aluminosilicate
Nanomaterials .................................. 434
12.2.2.1 Surface Area .......................... 434
12.2.2.2 Porosity .............................. 435
12.2.2.3 Surface Charge and Functional
Groups ................................ 435
12.2.3 Surface Modification of Aluminosilicate
Nanomaterials .................................. 436
12.2.3.1 Acid Activation ....................... 436
12.2.3.2 Thermal Treatment ..................... 437
12.2.3.3 Intercalation ......................... 437
12.2.3.4 Pillaring ............................. 438
12.2.3.5 Chemical Modifications of Allophane
and Imogolite ......................... 439
12.3 Environmental Applications of Aluminosilicate
Nanomaterials ......................................... 440
12.3.1 Adsorbents of Metal Ions ....................... 440
12.3.2 Adsorbents of Anions ........................... 443
12.3.3 Adsorbents of Nonionic Organic Compounds ....... 446
12.3.4 Adsorbents of Gases ............................ 448
12.4 Assessment of Aluminosilicate Nanomaterials for
Environmental Applications ............................ 450
12.5 Summary and Future Perspectives ....................... 452
Acknowledgments ............................................ 453
References ................................................. 453
13 S-Layer Protein Lattices Studied by Scanning Force
Microscopy ................................................. 459
Dietmar Pum, Jilin Tang, Peter Hinterdorfer, Jose-Luis
Toca Herrera, and Uwe B. Sleytr
13.1 I ntroduction ......................................... 459
13.2 Description of S-Layer Proteins ....................... 460
13.2.1 Occurrence, Location, and Ultrastructure ....... 460
13.2.2 S-Layer Fusion Proteins ........................ 461
13.2.3 S-Layer Self-Assembly .......................... 462
13.2.4 Crystal Growth at Interfaces ................... 462
13.3 S-Layer Protein Microstructures ....................... 465
13.3.1 Photolithography ............................... 465
13.3.2 Soft Lithography: Micromolding in
Capillaries .................................... 466
13.3.3 Soft Lithography: Microcontact Printing ........ 468
13.4 S-Layer Protein Reassembly at Interphases ............. 469
13.4.1 High-Resolution Imaging of S-Layer Lattices
in Contact Mode ................................ 469
13.4.2 Force-Distance Curves .......................... 470
13.4.3 Probing the Mechanical Properties of
S-Layers ....................................... 470
13.4.4 Controlled Unzipping of S-Layer Protein
Lattices ....................................... 471
13.5 S-Layer Proteins Lattices with Functional Groups for
Recognition Imaging and Molecule Templating ........... 472
13.5.1 Principles of Single-Molecule Recognition
Force Spectroscopy ............................. 472
13.5.2 Single-Molecule Recognition Force
Spectroscopy Investigations on S-Layers ........ 474
13.5.3 MAC Mode AFM Imaging ........................... 478
13.5.4 Principles of Topography and Recognition
Imaging ........................................ 481
13.5.5 Topography and Recognition Imaging of
S-Layer ........................................ 481
13.5.6 Fabrication of Molecule and Nanoparticle
Arrays Templated by S-Layer Lattices ........... 484
13.6 Reassembly of S-Layer Proteins on Solid Supports
with Modified Surface Properties ...................... 488
13.6.1 Hydrophilic versus Hydrophobic Supports ........ 488
13.6.2 Reassembly on Mica ............................. 488
13.6.3 Reassembly on Silicon Substrates ............... 490
13.6.4 Reassembly on Silanized Silicon Substrates ..... 491
13.6.5 Polyelectrolyte Multilayers .................... 491
13.6.6 Dialkyldisulfide Derivatives ................... 495
13.6.7 Chemical, Thermal, and Mechanical Stability .... 495
13.7 Applications .......................................... 499
13.8 Summary and Conclusions ............................... 501
Acknowledgments ............................................ 502
References ................................................. 503
14 Nanoscale Deformation Mechanisms in Biological Tissues ..... 577
Himadri S. Gupta
14.1 Introduction .......................................... 511
14.2 Approaches to Investigating Nanoscale Deformation of
Biocomposites ......................................... 514
14.2.1 Whole-System (Macroscopic) Mechanical
Testing ........................................ 515
14.2.2 Multiscale Deformation and Structural Probes
(In-Situ Methods) .............................. 515
14.2.3 Deformation of Individual Molecules and
Fibrils ........................................ 517
14.2.4 Modeling and Ab-initio Simulation .............. 527
14.3 Nanoscale Deformation Mechanisms in Mineralized
Tissues ............................................... 518
14.3.1 Mineralized Collagen Composites: Bone,
Antler, and Mineralized Tendon ................. 518
14.3.1.1 Bone .................................. 518
14.3.1.2 Deer Antler ........................... 523
14.3.1.3 Mineralized Tendon .................... 525
14.3.2 Anisotropy of the Nanoscale Response ........... 526
14.3.2.1 Nanoindentation ....................... 528
14.3.3 Modeling of Nanostructural Deformation ......... 528
14.3.3.1 Continuum Micromechanical Modeling .... 528
14.3.3.2 Ab-initio Modeling .................... 530
14.4 Deformation in Hypermineralized Systems: Enamel and
Abalone Nacre ......................................... 531
14.4.1 Dental Enamel .................................. 531
14.4.2 Abalone Nacre .................................. 532
14.5 Deformation Mechanisms in Soft Collagenous Tissues:
Tendons, Ligaments, and Cartilage ..................... 535
14.6 Mechanics of the All-Organic Nanocomposite of the
Wood Cell Wall ........................................ 539
14.6.1 The Velcro Model of Wood Cell Deformation ...... 540
14.6.2 Low-Microfibril Angle Wood Tissue and
Cellulose ...................................... 541
14.7 Summary and Outlook ................................... 541
14.7.1 Commonalities Across Systems ................... 542
14.7.2 Future Perspectives and Outlook ................ 543
Acknowledgments ............................................ 544
References ................................................. 545
Index ......................................................... 553
|