Biomimetic and bioinspired nanomaterials (Weinheim, 2010). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаBiomimetic and bioinspired nanomaterials / ed. by C.S.S.R.Kumar. - Weinheim: Wiley-VCH, 2010. - xxii, 564 p.: ill. - (Nanomaterials for life sciences; Vol.7). - Incl. bibl. ref. - Ind.: p.553-564. - ISBN 978-3-527-32167-4
 

Оглавление / Contents
 
Preface ........................................................ XV
List of Contributors .......................................... XIX

1  Gecko-Inspired Nanomaterials ................................. 7
   Christian Greiner
   1.1  The Gecko and Its Adhesion Capabilities ................. 1
        1.1.1  What are Setae? .................................. 1
        1.1.2  Walking on the Ceiling ........................... 3
   1.2  The Physics of Gecko Adhesion ........................... 4
        1.2.1  Contact Splitting ................................ 4
        1.2.2  Adhesion Design Maps ............................. 6
   1.3  Fabrication Methods for Gecko-Inspired Adhesives ........ 8
        1.3.1  Soft-Molding ..................................... 8
        1.3.2  Nanostructured Adhesive Surfaces ................ 11
               1.3.2.1  Hot Embossing .......................... 11
               1.3.2.2  Filling Nanoporous Membranes ........... 11
               1.3.2.3  Electron-Beam Lithography .............. 12
               1.3.2.4  Carbon Nanotubes ....................... 13
               1.3.2.5  Drawing Polymer Fibers ................. 13
               1.3.2.6  Hierarchical Adhesive Surfaces ......... 14
               1.3.2.7  3-D Structured Adhesive Surfaces ....... 16
               1.3.2.8  Switchable Adhesive Surfaces Made
                        from Responsive Materials .............. 17
   1.4  Measuring Adhesion ..................................... 17
        1.4.1  What Actually is Measured? ...................... 17
        1.4.2  How is Adhesion Measured? ....................... 20
   1.5  What Have We Learned About Fibrillar Adhesives? ........ 22
        1.5.1  Contact Splitting ............................... 22
        1.5.2  Aspect Ratio .................................... 23
        1.5.3  Tip Geometry .................................... 24
        1.5.4  Young's Modulus ................................. 25
        1.5.5  Backing Layer ................................... 25
        1.5.6  Tilt Angle ...................................... 26
        1.5.7  Hierarchy ....................................... 27
        1.5.8  Experimental Parameters that Influence
               Measurements .................................... 28
               1.5.8.1  Adhesion Tests: Indentation versus
                        Peeling ................................ 28
               1.5.8.2  Indenter Geometry ...................... 29
               1.5.8.3  Humidity ............................... 29
        1.5.9  Other Approaches and Factors .................... 30
   1.6  Applications in the Life Sciences ...................... 30
   1.7  Summary and Future Perspectives ........................ 33
   References .................................................. 34
2  Tooth-Inspired Nanocomposites ............................... 41
   Janet Moradian-Oldak and Yuwei Fan
   2.1  Introduction ........................................... 41
        2.1.1  Biologically Formed Nanocomposites .............. 42
        2.1.2  Nanocomposite Synthesis ......................... 44
   2.2  Enamel ................................................. 45
        2.2.1  Enamel Hierarchical Structure ................... 46
        2.2.2  Molecular Mechanisms in Amelogenesis (Enamel
               Formation) ...................................... 47
               2.2.2.1  Amelogenin ............................. 48
               2.2.2.2  Other Enamel Proteins .................. 50
        2.2.3  Synthesis of Enamel-Like Organized Apatite
               Crystals ........................................ 52
        2.2.4  Amelogenin-Based Nanocomposites ................. 54
               2.2.4.1  Controlled Crystallization of Apatite
                        by Amelogenin .......................... 54
               2.2.4.2  Biomimetic Coatings Using Simulated
                        Body Fluid ............................. 56
               2.2.4.3  Amelogenin-Apatite Coatings Using
                        Electrodeposition (ELD) ................ 57
               2.2.4.4  Bioinspired Remineralization of
                        Enamel ................................. 61
   2.3  Dentin ................................................. 64
        2.3.1  Types of Dentin ................................. 65
        2.3.2  Dentin Hierarchical Structure ................... 65
        2.3.3  Molecular Mechanisms in Dentinogenesis (Dentin
               Formation) ...................................... 66
               2.3.3.1  Collagen ............................... 67
               2.3.3.2  Noncollagenous Extracellular Matrix
                        Proteins ............................... 67
        2.3.4  Collagen-Calcium Phosphate Nanocomposites ....... 69
               2.3.4.1  Biomimetic Collagen Mineralization
                        Using SBF .............................. 69
               2.3.4.2  Bioinspired Mineralization of
                        Collagen ............................... 71
               2.3.4.3  Collagen-Apatite Coating in Modified
                        SBF .................................... 73
               2.3.4.4  Collagen-Apatite Coating by
                        Electrodeposition ...................... 73
        2.3.5  Dentin Remineralization ......................... 75
   2.4  Summary and Future Perspective ......................... 76
   Acknowledgments ............................................. 77
   Abbreviations ............................................... 77
   References .................................................. 78
3  Bioinspired Nanomaterials for Tissue Engineering ............ 89
   Andrew P. Loeffler and Peter X. Ma
   3.1  Introduction ........................................... 89
   3.2  Biomimetic Material Properties ......................... 91
        3.2.1  Scaffold Surface and Pore Structure ............. 91
        3.2.2  Scaffold Biodegradability ....................... 92
        3.2.3  Scaffold Mechanical Properties .................. 93
        3.2.4  Scaffold Biocompatibility and Cellular
               Interactions .................................... 94
   3.3  Nanofiber Scaffold Fabrication Methods ................. 94
        3.3.1  Electrospinning ................................. 95
        3.3.2  Self-Assembly ................................... 97
        3.3.3  Phase Separation ................................ 99
               3.3.3.1  Predesigned Macropores ................ 100
               3.3.3.2  Solid Freeform Fabrication ............ 101
   3.4  Modification of Nanofibrous Scaffolds ................. 103
        3.4.1  Scaffold Surface Modifications ................. 104
        3.4.2  Inorganic Composite Scaffolds .................. 105
        3.4.3  Factor Delivery Scaffolds ...................... 107
   3.5  Biological Effects of Nanofibers ...................... 110
        3.5.1  Cell Attachment and Morphology ................. 110
        3.5.2  Proliferation .................................. 112
        3.5.3  Differentiation and Tissue Formation ........... 113
   3.6  Conclusions ........................................... 115
   References ................................................. 116
4  Nature-Inspired Molecular Machines ......................... 725
   Aitan Lawit, Bala Krishna Juluri, and Tony Jun Huang
   4.1  Introduction .......................................... 125
   4.2  Biological Molecular Machines ......................... 125
        4.2.1  Kinesin and Myosin ............................. 126
        4.2.2  ATPase ......................................... 132
        4.2.3  DNA ............................................ 134
   4.3  Biomimetic Molecular Machines ......................... 136
        4.3.1  Rotaxanes, Catenanes, and Pseudorotaxanes ...... 137
        4.3.2  Nanocars ....................................... 142
        4.3.3  Polyelectrolyte Brushes ........................ 143
        4.3.4  Light-Driven Molecular Motors .................. 145
   4.4  Conclusions ........................................... 146
   4.5  Future Perspective .................................... 147
   References ................................................. 147
5  Biomimetic and Bioinspired Self-Assembled Peptide
   Nanostructures ............................................. 157
   Francesco Pampaloni and Andrea Masotti
   5.1  Introduction .......................................... 151
        5.1.1  Some Key Principles of Biological Self-
               Assembly ....................................... 151
        5.1.2  Biological Self-Assembly in Nanotechnology ..... 152
   5.2  Peptide-Based Self-Assembling Nanomaterials ........... 152
        5.2.1  Alpha-Helical Coiled-Coil ...................... 153
               5.2.1.1  Self-Assembly Mechanism of Coiled-
                        Coils ................................. 153
               5.2.1.2  De Novo-Designed α-Helix Coiled-Coil
                        Nanofibers ............................ 154
        5.2.2  β-Sheet Structures ............................. 158
               5.2.2.1  Amyloid Fibrils ....................... 158
               5.2.2.2  De Novo-Designed [5-Sheet Materials ... 160
               5.2.2.3  Collagen-Based Assemblies ............. 162
   5.3  Matrices for Tissue Engineering and Regenerative
        Medicine .............................................. 164
        5.3.1  Peptide-Amphiphile Nanofiber Matrices .......... 166
               5.3.1.1  Molecular Structure ................... 166
               5.3.1.2  Self-Assembly and Physical-
                        Biochemical Properties ................ 166
               5.3.1.3  Applications in 3-D Cell Cultures ..... 168
               5.3.1.4  Applications in Regenerative
                        Medicine .............................. 169
        5.3.2  Beta-Sheet Nanofiber Matrices ("Designer
               Peptides") ..................................... 170
               5.3.2.1  Molecular Structure ................... 170
               5.3.2.2  Self-Assembly Mechanism and
                        Biophysical Properties ................ 172
               5.3.2.3  Applications in 3-D Cell Cultures ..... 172
               5.3.2.4  Applications in Regenerative
                        Medicine .............................. 173
               5.3.2.5  Local Delivery of Molecules ........... 174
        5.3.3  Beta-Hairpin Peptides .......................... 175
               5.3.3.1  Molecular Structure ................... 175
               5.3.3.2  Self-Assembly Mechanism and
                        Biophysical Properties ................ 176
               5.3.3.3  Applications in 3-D Cell Cultures ..... 177
               5.3.3.4  Applications in Regenerative
                        Medicine .............................. 177
   5.4  Virus-Based and Virus-Inspired Nanomaterials .......... 177
               5.4.1.1  Nanomechanical Properties of Virus
                        Capsids ............................... 178
        5.4.2  Applications of Viruses in Nanotechnology ...... 180
               5.4.2.1  Virus-Based Nanostructures and Self-
                        Organizing Assemblies ................. 181
               5.4.2.2  Virus-Like Particles Encapsulating
                        Non-Genetic Molecular Cargos .......... 185
               5.4.2.3  Synthetic Viruses ..................... 187
               5.4.2.4  Functionalization of Virus Capsids .... 189
               5.4.2.5  Viruses as Templates for Programmed
                        Synthesis of Nanomaterials ............ 193
   5.5  Biomimetic Nanotubes .................................. 194
        5.5.1  Properties of Nanotubes ........................ 194
        5.5.2  Peptide and Protein Nanotubes .................. 195
        5.5.3  Cellular Microtubules .......................... 198
               5.5.3.1  Self-Assembly and Structure of
                        Microtubules .......................... 198
               5.5.3.2  Microtubule Bundles ................... 199
               5.5.3.3  Prospect: Insights from MT for
                        Nanotechnology ........................ 199
   Acknowledgments ............................................ 200
   Abbreviations .............................................. 200
   References ................................................. 202
6  Bioinspired Layered Nanomaterials in Medical Therapy ....... 213
   Jin-Ho Choy, Jae-Min Oh, Soo-Jin Choi, and Hyun Jung
   6.1  Introduction .......................................... 213
   6.2  Features of Layered Nanomaterials ..................... 214
        6.2.1  Anionic Layered Nanomaterials: Layered Double
               Hydroxides (LDHs) .............................. 214
        6.2.2  Cationic Layered Nanomaterials: Clays .......... 215
   6.3  Layered Nanomaterials in Medical Applications ......... 218
        6.3.1  LDHs ........................................... 218
               6.3.1.1  Biomolecule Stabilization ............. 218
               6.3.1.2  Drug-Delivery Systems ................. 223
               6.3.1.3  Enhanced Cellular Uptake .............. 225
               6.3.1.4  Targeted Cellular Delivery ............ 228
        6.3.2  Applications of Layered Aluminosilicate and
               Clay ........................................... 232
   6.4  Toxicity .............................................. 239
        6.4.1  Effects of LDH Chemical Composition on
               Cytotoxicity ................................... 240
        6.4.2  Effects of LDH Particle Size on Cytotoxicity ... 243
   6.5  Conclusions ........................................... 245
   References ................................................. 246
7  Biological and Biomimetic Synthesis of Metal
   Nanomaterials .............................................. 257
   Jianping Xie, Yen Nee Tan, and Jim Yang Lee
   7.1  Introduction .......................................... 251
   7.2  Synthesis of Au/Ag Nanomaterials by Whole Organisms ... 252
        7.2.1  Living Organisms as Nanofactories .............. 252
               7.2.1.1  Bacteria .............................. 252
               7.2.1.2  Plants ................................ 255
        7.2.2  Biomass as Nanofactories ....................... 255
               7.2.2.1  Intracellular Synthesis ............... 256
               7.2.2.2  Extracellular Synthesis ............... 257
   7.3  Synthesis of Au/Ag Nanomaterials by Biomolecule
        Mixtures .............................................. 258
        7.3.1  Intracellular Contents ......................... 258
        7.3.2  Secreted Biomolecules from Organisms ........... 263
   7.4  Synthesis of Au/Ag Nanomaterials by Proteins .......... 264
   7.5  Synthesis of Au/Ag Nanomaterials by Amino Acids/
        Peptides .............................................. 267
        7.5.1  Amino Acids .................................... 268
        7.5.2  Peptides ....................................... 271
               7.5.2.1  Combinatorial Screening of Active
                        Peptides for Nanoparticle Synthesis ... 271
               7.5.2.2  Artificial Peptides for Nanoparticle
                        Synthesis ............................. 272
               7.5.2.3  Peptide Films as Reactive Templates ... 274
   7.6  Conclusions ........................................... 276
   Acknowledgments ............................................ 276
   References ................................................. 276
8  Biomimetic Nanosensors and Nanoactuators ................... 283
   Mohsen Shahinpoor
   8.1  Introduction .......................................... 283
   8.2  Three-Dimensional Fabrication of BNNs ................. 286
        8.2.1  Manufacturing Methodologies .................... 287
        8.2.2  Manufacturing Steps ............................ 287
   8.3  Electrically Induced Robotic Actuation ................ 289
   8.4  Distributed Nanosensing and Transduction .............. 293
   8.5  Modeling and Simulation ............................... 297
   Acknowledgments ............................................ 300
   References ................................................. 300
9  Biomimetic Nanotechnology .................................. 303
   Takahiro Ishizaki, Katsuya Teshima, Sun Hyung Lee,
   Yoshitake Masuda, Nagahiro Saito, and Osamu Takai
   9.1  Introduction .......................................... 303
   9.2  Biocrystal Growth via Environmentally Friendly
        Nature-Mimetic Processing ............................. 305
        9.2.1  Flux Growth of Hydroxyapatite Crystals ......... 305
        9.2.2  Gel Growth of Hydroxyapatite Precursor
               (Octacalcium Phosphate) Crystals ............... 308
   9.3  Biomimetic Morphology Control of Metal Oxides and
        Their Site-Selective Immobilization ................... 310
        9.3.1  Morphology Control and Site-Selective
               Immobilization of Metal Oxides ................. 310
        9.3.2  Liquid-Phase Morphology Control of a Stand-
               Alone ZnO Self-Assembled Film .................. 312
        9.3.3  Biomimetic Site-Selective Immobilization of
               Eu:Y203 ........................................ 318
   9.4  Application of Biomimetic Super-Hydrophobic Surfaces
        to Micro-patterning of Biomolecules ................... 325
        9.4.1  Biomimetic Super-Hydrophobic Surfaces .......... 325
        9.4.2  Micropatterning of Bacteria on Biomimetic
               Super-Hydrophobic/ Super-Hydrophilic
               Surfaces ....................................... 326
        9.4.3  Micropatterning of Cells on Biomimetic Super-
               Hydrophobic/Super-Hydrophilic Surfaces ......... 331
   9.5  Summary and Outlook ................................... 335
   References ................................................. 336
10 Biomimetic Approaches to Self-Assembly of Nanomaterials .... 343
   Daniel Aili and Bo Liedberg
   10.1 Introduction .......................................... 343
   10.2 Self-Assembly ......................................... 344
   10.3 Polypeptide-Based Nanomaterials ....................... 345
        10.3.1 De Novo-Designed Helix-Loop-Helix
               Polypeptides ................................... 346
        10.3.2 Polypeptides with Controllable Folding
               Properties ..................................... 347
        10.3.3 Polypeptide Scaffolds for Protein
               Recognition .................................... 349
        10.3.4 Polypeptide-Based Nanofibers ................... 350
        10.3.5 Biomolecular Fibers for the Assembly of
               Nanowires ...................................... 353
   10.4 Self-Assembly of Hybrid Nanomaterials ................. 353
        10.4.1 Gold Nanoparticles ............................. 354
        10.4.2 Synthesis of Gold Nanoparticles ................ 355
        10.4.3 Optical Properties of Gold Nanoparticles ....... 356
        10.4.4 Surface-Functionalization of Gold
               Nanoparticles .................................. 358
        10.4.5 Biomimetic Self-Assembly of Gold
               Nanoparticles .................................. 359
   10.5 Nanoparticle Assembly in Biodiagnostics ............... 364
   10.6 Conclusions and Outlook ............................... 367
   Acknowledgments ............................................ 368
   Abbreviations .............................................. 368
   References ................................................. 369
11 Biomimetic Artificial Nanostructured Surfaces .............. 379
   Emmanuel I. Stratakis and Vassilia Zorba
   11.1 Introduction .......................................... 379
   11.2 Learning from Nature: Properties of Natural
        Nanostructured Surfaces ............................... 380
        11.2.1 Wetting Properties ............................. 381
               11.2.1.1 Water Repellency and Self-Cleaning
                        Properties ............................ 383
               11.2.1.2 Super-Hydrophilicity .................. 387
               11.2.1.3 Increased Water-Supporting Force ...... 387
               11.2.1.4 Antifogging ........................... 388
               11.2.1.5 Under-Water Air-Retaining Surfaces .... 388
        11.2.2 Mechanical and Adhesive Properties ............. 388
               11.2.2.1 Dry Adhesion .......................... 388
               11.2.2.2 Wet Adhesion .......................... 391
               11.2.2.3 Friction Reduction .................... 392
               11.2.2.4 Mechanical Stiffness and Stretching ... 392
        11.2.3 Optical Properties ............................. 393
               11.2.3.1 Structural Coloration ................. 393
               11.2.3.2 Broad-Range Coloration and Strong
                        Flicker Contrast ...................... 397
               11.2.3.3 Antireflection Coatings ............... 399
        11.2.4 Intelligent Biological Nanostructured
               Surfaces ....................................... 400
               11.2.4.1 Anisotropic Wettability ............... 401
               11.2.4.2 Smart Friction Reduction .............. 401
               11.2.4.3 Responsive Coloration Change .......... 402
               11.2.4.4 Thermal Response ...................... 402
               11.2.4.5 Vapor Response ........................ 402
   11.3 Fabrication of Biomimetic Artificial Nanostructures ... 403
        11.3.1 Wetting Properties of Biomimetic Artificial
               Nanostructures ................................. 404
               11.3.1.1 Hierarchical Super-Hydrophobic
                        Surfaces .............................. 405
               11.3.1.2 Hierarchical Super-Hydrophilic
                        Surfaces .............................. 407
               11.3.1.3 Anisotropic Wettability of
                        Hierarchical Structures ............... 409
        11.3.2 Adhesion Properties of Biomimetic Artificial
               Nanostructures ................................. 411
        11.3.3 Optical Properties of Biomimetic Artificial
               Nanostructures ................................. 414
               11.3.3.1 Structural Coloration ................. 414
               11.3.3.2 Iridescence and Chiral Reflectors ..... 416
               11.3.3.3 Antireflection Coatings ............... 416
   11.4 Applications of Biomimetic Artificial
        Nanostructures ........................................ 419
        11.4.1 Wetting Applications ........................... 419
        11.4.2 Adhesion Applications .......................... 420
        11.4.3 Optical Applications ........................... 421
   11.5 Conclusions and Future Outlook ........................ 421
   References ................................................. 423
12 Natural and Modified Nanomaterials for Environmental
   Applications ............................................... 429
   Cuodong Yuan
   12.1 Introduction .......................................... 429
   12.2 Aluminosilicate Nanomaterials ......................... 431
        12.2.1 Occurrence and Structure of Natural
               Aluminosilicate Nanomaterials .................. 431
        12.2.2 Surface Properties of Aluminosilicate
               Nanomaterials .................................. 434
               12.2.2.1 Surface Area .......................... 434
               12.2.2.2 Porosity .............................. 435
               12.2.2.3 Surface Charge and Functional
                        Groups ................................ 435
        12.2.3 Surface Modification of Aluminosilicate
               Nanomaterials .................................. 436
               12.2.3.1 Acid Activation ....................... 436
               12.2.3.2 Thermal Treatment ..................... 437
               12.2.3.3 Intercalation ......................... 437
               12.2.3.4 Pillaring ............................. 438
               12.2.3.5 Chemical Modifications of Allophane
                        and Imogolite ......................... 439
   12.3 Environmental Applications of Aluminosilicate
        Nanomaterials ......................................... 440
        12.3.1 Adsorbents of Metal Ions ....................... 440
        12.3.2 Adsorbents of Anions ........................... 443
        12.3.3 Adsorbents of Nonionic Organic Compounds ....... 446
        12.3.4 Adsorbents of Gases ............................ 448
   12.4 Assessment of Aluminosilicate Nanomaterials for
        Environmental Applications ............................ 450
   12.5 Summary and Future Perspectives ....................... 452
   Acknowledgments ............................................ 453
   References ................................................. 453
13 S-Layer Protein Lattices Studied by Scanning Force
   Microscopy ................................................. 459
   Dietmar Pum, Jilin Tang, Peter Hinterdorfer, Jose-Luis
   Toca Herrera, and Uwe B. Sleytr
   13.1 I ntroduction ......................................... 459
   13.2 Description of S-Layer Proteins ....................... 460
        13.2.1 Occurrence, Location, and Ultrastructure ....... 460
        13.2.2 S-Layer Fusion Proteins ........................ 461
        13.2.3 S-Layer Self-Assembly .......................... 462
        13.2.4 Crystal Growth at Interfaces ................... 462
   13.3 S-Layer Protein Microstructures ....................... 465
        13.3.1 Photolithography ............................... 465
        13.3.2 Soft Lithography: Micromolding in
               Capillaries .................................... 466
        13.3.3 Soft Lithography: Microcontact Printing ........ 468
   13.4 S-Layer Protein Reassembly at Interphases ............. 469
        13.4.1 High-Resolution Imaging of S-Layer Lattices
               in Contact Mode ................................ 469
        13.4.2 Force-Distance Curves .......................... 470
        13.4.3 Probing the Mechanical Properties of
               S-Layers ....................................... 470
        13.4.4 Controlled Unzipping of S-Layer Protein
               Lattices ....................................... 471
   13.5 S-Layer Proteins Lattices with Functional Groups for
        Recognition Imaging and Molecule Templating ........... 472
        13.5.1 Principles of Single-Molecule Recognition
               Force Spectroscopy ............................. 472
        13.5.2 Single-Molecule Recognition Force
               Spectroscopy Investigations on S-Layers ........ 474
        13.5.3 MAC Mode AFM Imaging ........................... 478
        13.5.4 Principles of Topography and Recognition
               Imaging ........................................ 481
        13.5.5 Topography and Recognition Imaging of
               S-Layer ........................................ 481
        13.5.6 Fabrication of Molecule and Nanoparticle
               Arrays Templated by S-Layer Lattices ........... 484
   13.6 Reassembly of S-Layer Proteins on Solid Supports
        with Modified Surface Properties ...................... 488
        13.6.1 Hydrophilic versus Hydrophobic Supports ........ 488
        13.6.2 Reassembly on Mica ............................. 488
        13.6.3 Reassembly on Silicon Substrates ............... 490
        13.6.4 Reassembly on Silanized Silicon Substrates ..... 491
        13.6.5 Polyelectrolyte Multilayers .................... 491
        13.6.6 Dialkyldisulfide Derivatives ................... 495
        13.6.7 Chemical, Thermal, and Mechanical Stability .... 495
   13.7 Applications .......................................... 499
   13.8 Summary and Conclusions ............................... 501
   Acknowledgments ............................................ 502
   References ................................................. 503
14 Nanoscale Deformation Mechanisms in Biological Tissues ..... 577
   Himadri S. Gupta
   14.1 Introduction .......................................... 511
   14.2 Approaches to Investigating Nanoscale Deformation of
        Biocomposites ......................................... 514
        14.2.1 Whole-System (Macroscopic) Mechanical
               Testing ........................................ 515
        14.2.2 Multiscale Deformation and Structural Probes
               (In-Situ Methods) .............................. 515
        14.2.3 Deformation of Individual Molecules and
               Fibrils ........................................ 517
        14.2.4 Modeling and Ab-initio Simulation .............. 527
   14.3 Nanoscale Deformation Mechanisms in Mineralized
        Tissues ............................................... 518
        14.3.1 Mineralized Collagen Composites: Bone,
               Antler, and Mineralized Tendon ................. 518
               14.3.1.1 Bone .................................. 518
               14.3.1.2 Deer Antler ........................... 523
               14.3.1.3 Mineralized Tendon .................... 525
        14.3.2 Anisotropy of the Nanoscale Response ........... 526
               14.3.2.1 Nanoindentation ....................... 528
        14.3.3 Modeling of Nanostructural Deformation ......... 528
               14.3.3.1 Continuum Micromechanical Modeling .... 528
               14.3.3.2 Ab-initio Modeling .................... 530
   14.4 Deformation in Hypermineralized Systems: Enamel and
        Abalone Nacre ......................................... 531
        14.4.1 Dental Enamel .................................. 531
        14.4.2 Abalone Nacre .................................. 532
   14.5 Deformation Mechanisms in Soft Collagenous Tissues:
        Tendons, Ligaments, and Cartilage ..................... 535
   14.6 Mechanics of the All-Organic Nanocomposite of the
        Wood Cell Wall ........................................ 539
        14.6.1 The Velcro Model of Wood Cell Deformation ...... 540
        14.6.2 Low-Microfibril Angle Wood Tissue and
               Cellulose ...................................... 541
   14.7 Summary and Outlook ................................... 541
        14.7.1 Commonalities Across Systems ................... 542
        14.7.2 Future Perspectives and Outlook ................ 543
   Acknowledgments ............................................ 544
   References ................................................. 545

Index ......................................................... 553


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:21:56 2019. Размер: 35,374 bytes.
Посещение N 2470 c 22.02.2011