Weiss U. Quantum dissipative systems (Singapore, 2008). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаWeiss U. Quantum dissipative systems. - 3rd ed. - Singapore: World Scientific, 2008. - xviii, 507 p. - (Series in modern condensed matter physics; Vol.13). - Bibliogr.: p.483-501. - Ind.: p.503-507. - ISBN-10 981-279-162-0; ISBN-13 978-981-279-162-7
 

Оглавление / Contents
 
I Introduction .................................................. 1

1  GENERAL THEORY OF OPEN QUANTUM SYSTEMS ....................... 5
2  Diverse limited approaches: a brief survey ................... 5
   2.1  Langevin equation for a damped classical system ......... 5
   2.2  New schemes of quantization ............................. 7
   2.3  Traditional system-plus-reservoir methods ............... 8
        2.3.1  Quantum-mechanical master equations for weak
               coupling ......................................... 8
        2.3.2  Operator Langevin equations for weak coupling ... 12
        2.3.3  Quantum and quasiclassical Langevin equation .... 13
        2.3.4  Phenomenological methods ........................ 14
   2.4  Stochastic dynamics in Hilbert space ................... 15
3  System-plus-reservoir models ................................ 18
   3.1  Harmonic oscillator bath with linear coupling .......... 19
        3.1.1  The Hamiltonian of the global system ............ 19
        3.1.2  The road to the classical generalized Langevin
               equation ........................................ 21
        3.1.3  Phenomenological modeling ....................... 24
        3.1.4  Quasiclassical Langevin equation ................ 25
        3.1.5  Ohmic and frequency-dependent damping ........... 27
        3.1.6  Rubin model ..................................... 30
   3.2  The Spin-Boson model ................................... 31
        3.2.1  The model Hamiltonian ........................... 31
        3.2.2  Josephson two-state systems: flux and charge
               qubit ........................................... 35
   3.3  Microscopic models ..................................... 38
        3.3.1  Acoustic polaron: one-phonon and two-phonon
               coupling ........................................ 40
        3.3.2  Optical polaron ................................. 41
        3.3.3  Interaction with fermions (normal and
               superconducting) ................................ 43
        3.3.4  Superconducting tunnel junction ................. 46
   3.4  Charging and environmental effects in tunnel
        junctions .............................................. 47
        3.4.1  The global system for single electron
               tunneling ....................................... 49
        3.4.2  Resistor, inductor and transmission lines ....... 53
        3.4.3  Charging effects in Josephson junctions ......... 54
   3.5  Nonlinear quantum environments ......................... 55
4  Imaginary-time path integrals ............................... 57
   4.1  The density matrix: general concepts ................... 58
   4.2  Effective action and equilibrium density matrix ........ 62
        4.2.1  Open system with bilinear coupling to
               a harmonic reservoir ............................ 63
        4.2.2  State-dependent memory-friction ................. 67
        4.2.3  Spin-boson model ................................ 68
        4.2.4  Acoustic polaron and defect tunneling:
               one-phonon coupling ............................. 69
        4.2.5  Acoustic polaron: two-phonon coupling ........... 75
        4.2.6  Tunneling between surfaces: one-phonon
               coupling ........................................ 77
        4.2.7  Optical polaron ................................. 79
        4.2.8  Heavy particle in a metal ....................... 80
        4.2.9  Heavy particle in a superconductor .............. 86
        4.2.10 Effective action for a Josephson junction ....... 88
        4.2.11 Electromagnetic environment ..................... 95
   4.3  Partition function of the open system .................. 96
        4.3.1  General path integral expression ................ 96
        4.3.2  Semiclassical approximation ..................... 97
        4.3.3  Partition function of the damped harmonic
               oscillator ...................................... 98
        4.3.4  Functional measure in Fourier space ............. 99
        4.3.5  Partition function of the damped harmonic
               oscillator revisited ........................... 100
   4.4  Quantum statistical expectation values in phase
        space ................................................. 102
        4.4.1  Generalized Weyl correspondence ................ 103
        4.4.2  Generalized Wigner function and expectation
               values ......................................... 105
5  Real-time path integrals and dynamics ...................... 106
   5.1  Feynman-Vernon method for a product initial state ..... 108
   5.2  Decoherence and friction .............................. 112
   5.3  General initial states and preparation function ....... 115
   5.4  Complex-time path integral for the propagating
        function .............................................. 116
   5.5  Real-time path integral for the propagating
        function .............................................. 120
        5.5.1  Extremal paths ................................. 123
        5.5.2  Classical limit ................................ 124
        5.5.3  Semiclassical limit: quasiclassical Langevin
               equation ....................................... 125
   5.6  Stochastic unraveling of influence functionals ........ 127
   5.7  Brief summary and outlook ............................. 130

II  FEW SIMPLE APPLICATIONS ................................... 131

6  Damped harmonic oscillator ................................. 131
   6.1  Fluctuation-dissipation theorem ....................... 132
   6.2  Stochastic modeling ................................... 135
   6.3  Susceptibility for Ohmic friction and Drude damping ... 138
        6.3.1  Strict Ohmic friction .......................... 138
        6.3.2  Drude damping .................................. 138
   6.4  The position autocorrelation function ................. 139
        6.4.1  Ohmic damping .................................. 140
        6.4.2  Algebraic spectral density ..................... 142
   6.5  Partition function, internal energy and density of
        states ................................................ 143
        6.5.1  Partition function and internal energy ......... 143
        6.5.2  Spectral density of states ..................... 146
   6.6  Mean square of position and momentum .................. 147
        6.6.1  General expressions for coloured noise ......... 147
        6.6.2  Strict Ohmic case .............................. 149
        6.6.3  Ohmic friction with Drude regularization ....... 150
   6.7  Equilibrium density matrix ............................ 152
        6.7.1  Purity ......................................... 154
7  Quantum Brownian free motion ............................... 156
   7.1  Spectral density, damping function and mass
        renormalization ....................................... 157
   7.2  Displacement correlation and response function ........ 159
   7.3  Ohmic damping ......................................... 160
   7.4  Frequency-dependent damping ........................... 163
        7.4.1  Response function and mobility ................. 163
        7.4.2  Mean square displacement ....................... 165
8  The thermodynamic variational approach ..................... 167
   8.1  Centroid and the effective classical potential ........ 167
        8.1.1  Centroid ....................................... 167
        8.1.2  The effective classical potential .............. 169
   8.2  Variational method .................................... 170
        8.2.1  Variational method for the free energy ......... 170
        8.2.2  Variational method for the effective
               classical potential ............................ 171
        8.2.3  Variational perturbation theory ................ 174
        8.2.4  Expectation values in coordinate and phase
               space .......................................... 176
9  Suppression of quantum coherence ........................... 178
   9.1  Nondynamical versus dynamical environment ............. 179
   9.2  Suppression of transversal and longitudinal
        interferences ......................................... 180
   9.3  Localized bath modes and universal decoherence ........ 182
        9.3.1  A model with localized bath modes .............. 182
        9.3.2  Statistical average of paths ................... 184
        9.3.3  Ballistic motion ............................... 185
        9.3.4  Diffusive motion ............................... 186

III  QUANTUM STATISTICAL DECAY ................................ 189

10 Introduction ............................................... 189
11 Classical rate theory: a brief overview .................... 192
   11.1 Classical transition state theory ..................... 192
   11.2 Moderate-to-strong-damping regime ..................... 193
   11.3 Strong damping regime ................................. 195
   11.4 Weak-damping regime ................................... 197
12 Quantum rate theory: basic methods ......................... 199
   12.1 Formal rate expressions in terms of flux operators .... 200
   12.2 Quantum transition state theory ....................... 202
   12.3 Semiclassical limit ................................... 203
   12.4 Quantum tunneling regime .............................. 205
   12.5 Free energy method .................................... 207
   12.6 Centroid method ....................................... 211
13 Multidimensional quantum rate theory ....................... 212
14 Crossover from thermal to quantum decay .................... 216
   14.1 Normal mode analysis at the barrier top ............... 216
   14.2 Turnover theory for activated rate processes .......... 218
   14.3 The crossover temperature ............................. 222
15 Thermally activated decay .................................. 223
   15.1 Rate formula above the crossover regime ............... 224
   15.2 Quantum corrections in the preexponential factor ...... 227
   15.3 The quantum Smoluchowski equation approach ............ 228
   15.4 Multidimensional quantum transition state theory ...... 230
16 The crossover region ....................................... 233
   16.1 Beyond steepest descent above T0 ...................... 235
   16.2 Beyond steepest descent below T0 ...................... 236
   16.3 The scaling region .................................... 239
17 Dissipative quantum tunneling .............................. 242
   17.1 The quantum rate formula .............................. 242
   17.2 Thermal enhancement of macroscopic quantum
        tunneling ............................................. 245
   17.3 Quantum decay in a cubic potential for Ohmic
        friction .............................................. 246
        17.3.1 Bounce action and quantum prefactor ............ 247
        17.3.2 Analytic results for strong Ohmic
               dissipation .................................... 248
   17.4 Quantum decay in a tilted cosine washboard
        potential ............................................. 250
   17.5 Concluding remarks .................................... 257

IV  THE DISSIPATIVE TWO-STATE SYSTEM .......................... 259

18 Introduction ............................................... 259
   18.1 Truncation of the double-well to the two-state
        system ................................................ 261
        18.1.1 Shifted oscillators and orthogonality
               catastrophe .................................... 261
        18.1.2 Adiabatic renormalization ...................... 263
        18.1.3 Renormalized tunnel matrix element ............. 264
        18.1.4 Polaron transformation ......................... 269
   18.2 Pair interaction in the charge picture ................ 269
        18.2.1 Analytic expression for any s and arbitrary
               cutoff ωc ...................................... 269
        18.2.2 Ohmic dissipation and universality limit ....... 271
19 Thermodynamics ............................................. 272
   19.1 Partition function and specific heat .................. 272
        19.1.1 Exact formal expression for the partition
               function ....................................... 272
        19.1.2 Static susceptibility and specific heat ........ 274
        19.1.3 The self-energy method ......................... 275
        19.1.4 The limit of high temperatures ................. 277
        19.1.5 Noninteracting-kink-pair approximation ......... 277
        19.1.6 Weak-damping limit ............................. 279
        19.1.7 The self-energy method revisited: partial
               resummation .................................... 280
   19.2 Ohmic dissipation ..................................... 281
        19.2.1 General results ................................ 282
        19.2.2 The special case K=1/2 ......................... 283
   19.3 Non-Ohmic spectral densities .......................... 288
        19.3.1 The sub-Ohmic case ............................. 288
        19.3.2 The super-Ohmic case ........................... 289
   19.4 Relation between the Ohmic TSS and the Kondo model .... 290
        19.4.1 Anisotropic Kondo model ........................ 290
        19.4.2 Resonance level model .......................... 292
   19.5 Equivalence of the Ohmic TSS with the 1/r2 Ising
        model ................................................. 293
20 Electron transfer and incoherent tunneling ................. 294
   20.1 Electron transfer ..................................... 295
        20.1.1 Adiabatic bath ................................. 296
        20.1.2 Marcus theory for electron transfer ............ 298
   20.2 Incoherent tunneling in the nonadiabatic regime ....... 302
        20.2.1 General expressions for the nonadiabatic
               rate ........................................... 302
        20.2.2 Probability for energy exchange: general
               results ........................................ 304
        20.2.3 The spectral probability density for
               absorption at T = 0 ............................ 307
        20.2.4 Crossover from quantum-mechanical to
               classical behaviour ............................ 308
        20.2.5 The Ohmic case ................................. 312
        20.2.6 Exact nonadiabatic rates for К = 1/2 and
               К = 1 .......................................... 314
        20.2.7 The sub-Ohmic case (0 < s < 1) ................. 315
        20.2.8 The super-Ohmic case (s > 1) ................... 317
        20.2.9 Incoherent defect tunneling in metals .......... 319
   20.3 Single charge tunneling ............................... 322
        20.3.1 Weak-tunneling regime .......................... 322
        20.3.2 The current-voltage characteristics ............ 326
        20.3.3 Weak tunneling of ID interacting electrons ..... 328
        20.3.4 Tunneling of Cooper pairs ...................... 330
        20.3.5 Tunneling of quasiparticles .................... 331
21 Two-state dynamics ......................................... 333
   21.1 Initial preparation, expectation values, and
        correlations .......................................... 333
        21.1.1 Product initial state .......................... 333
        21.1.2 Thermal initial state .......................... 336
   21.2 Exact formal expressions for the system dynamics ...... 340
        21.2.1 Sojourns and blips ............................. 340
        21.2.2 Conditional propagating functions .............. 343
        21.2.3 The expectation values (σj)t (j = x, y, z) ..... 344
        21.2.4 Correlation and response function of
               the populations ................................ 346
        21.2.5 Correlation and response function of
               the coherences ................................. 348
        21.2.6 Generalized exact master equation and
               integral relations ............................. 349
   21.3 The noninteracting-blip approximation (NIBA) .......... 352
        21.3.1 Symmetric Ohmic system in the scaling limit .... 355
        21.3.2 Weak Ohmic damping and moderate-to-high
               temperature .................................... 359
        21.3.3 The super-Ohmic case ........................... 365
   21.4 Weak-coupling theory beyond the NIBA for a biased
        system ................................................ 368
        21.4.1 The one-boson self-energy ...................... 369
        21.4.2 Populations and coherences (super-Ohmic and
               Ohmic) ......................................... 371
   21.5 The interacting-blip chain approximation .............. 373
   21.6 Ohmic dissipation with К at and near 1/2: exact
        results ............................................... 376
        21.6.1 Grand-canonical sums of collapsed blips and
               sojourns ....................................... 376
        21.6.2 The expectation value (σz)t for К = 1/2 ........ 377
        21.6.3 The case К = 1/2 - к; coherent-incoherent
               crossover ...................................... 379
        21.6.4 Equilibrium σz autocorrelation function ........ 380
        21.6.5 Equilibrium σx autocorrelation function ........ 385
        21.6.6 Correlation functions in the Toulouse model .... 387
   21.7 Long-time behaviour at T = 0 for К < 1: general
        discussion ............................................ 388
        21.7.1 The populations ................................ 389
        21.7.2 The population correlations and generalized
               Shiba relation ................................. 389
        21.7.3 The coherence correlation function ............. 391
   21.8 From weak to strong tunneling: relaxation and
        decoherence ........................................... 392
        21.8.1 Incoherent tunneling beyond the nonadiabatic
               limit .......................................... 392
        21.8.2 Decoherence at zero temperature: analytic
               results ........................................ 395
   21.9 Thermodynamics from dynamics .......................... 396
22 The driven two-state system ................................ 399
   22.1 Time-dependent external fields ........................ 399
        22.1.1 Diagonal and off-diagonal driving .............. 399
        22.1.2 Exact formal solution .......................... 400
        22.1.3 Linear response ................................ 402
        22.1.4 The Ohmic case with Kondo parameter К = 1/2 .... 403
   22.2 Markovian regime ...................................... 403
   22.3 High-frequency regime ................................. 404
   22.4 Quantum stochastic resonance .......................... 407
   22.5 Driving-induced symmetry breaking ..................... 409

V   THE DISSIPATIVE MULTI-STATE SYSTEM ........................ 411

23 Quantum Brownian particle in a washboard potential ......... 411
   23.1 Introduction .......................................... 411
   23.2 Weak- and tight-binding representation ................ 412
24 Multi-state dynamics ....................................... 413
   24.1 Quantum transport and quantum-statistical
        fluctuations .......................................... 413
        24.1.1 Product initial state .......................... 414
        24.1.2 Characteristic function of moments and
               cumulants ...................................... 414
        24.1.3 Thermal initial state and correlation
               functions ...................................... 415
   24.2 Poissonian quantum transport .......................... 416
        24.2.1 Dynamics by incoherent nearest-neighbour
               tunneling moves ................................ 416
        24.2.2 The general case ............................... 418
   24.3 Exact formal expressions for the system dynamics ...... 419
        24.3.1 Product initial state .......................... 421
        24.3.2 Thermal initial state .......................... 423
   24.4 Mobility and Diffusion ................................ 426
        24.4.1 Exact formal series expressions for transport
               coefficients ................................... 426
        24.4.2 Einstein relation .............................. 427
   24.5 The Ohmic case ........................................ 428
        24.5.1 Weak-tunneling regime .......................... 429
        24.5.2 Weak-damping limit ............................. 429
   24.6 Exact solution in the Ohmic scaling limit at 
        К = 1/2 ............................................... 431
        24.6.1 Current and mobility ........................... 431
        24.6.2 Diffusion and skewness ......................... 434
   24.7 The effects of a thermal initial state ................ 435
        24.7.1 Mean position and variance ..................... 435
        24.7.2 Linear response ................................ 436
        24.7.3 The exactly solvable case К = 1/2 .............. 439
25 Duality symmetry ........................................... 439
   25.1 Duality for general spectral density .................. 440
        25.1.1 The map between the ТВ and WB Hamiltonian ...... 440
        25.1.2 Frequency-dependent linear mobility ............ 443
        25.1.3 Nonlinear static mobility ...................... 444
   25.2 Self-duality in the exactly solvable cases К = 1/2 
        and К = 2 ............................................. 446
        25.2.1 Full counting statistics at К = 1/2 ............ 446
        25.2.2 Full counting statistics at К = 2 .............. 448
   25.3 Duality and supercurrent in Josephson junctions ....... 450
        25.3.1 Charge-phase duality ........................... 450
        25.3.2 Supercurrent-voltage characteristics for
               ρ <<  1 ........................................ 453
        25.3.3 Supercurrent-voltage characteristics at
               ρ = 1/2 ........................................ 454
        25.3.4 Supercurrent-voltage characteristics at
               ρ = 2 .......................................... 454
   25.4 Self-duality in the Ohmic scaling limit ............... 455
        25.4.1 Linear mobility at finite T .................... 456
        25.4.2 Nonlinear mobility at T = 0 .................... 457
   25.5 Exact scaling function at T = 0 for arbitrary К ....... 459
        25.5.1 Construction of the self-dual scaling
               solution ....................................... 459
        25.5.2 Supercurrent-voltage characteristics at T = 0
               for arbitrary ρ ................................ 462
        25.5.3 Connection with Seiberg-Witten theory .......... 462
        25.5.4 Special limits ................................. 463
   25.6 Full counting statistics at zero temperature .......... 464
   25.7 Low temperature behaviour of the characteristic
        function .............................................. 467
   25.8 The sub- and super-Ohmic case ......................... 468
26 Charge transport in quantum impurity systems ............... 470
   26.1 Generic models for transmission of charge through
        barriers .............................................. 471
        26.1.1 The Tomonaga-Luttinger liquid .................. 471
        26.1.2 Transport through a single weak barrier ........ 472
        26.1.3 Transport through a single strong barrier ...... 474
        26.1.4 Coherent conductor in an Ohmic environment ..... 476
        26.1.5 Equivalence with quantum transport in
               a washboard potential .......................... 478
   26.2 Self-duality between weak and strong tunneling ........ 478
   26.3 Full counting statistics .............................. 479
        26.3.1 Charge transport at low T for arbitrary g ...... 479
        26.3.2 Full counting statistics at g = 1/2 and 
               general temperature ............................ 482

Bibliography .................................................. 483

Index ......................................................... 503


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:21:52 2019. Размер: 28,854 bytes.
Посещение N 2009 c 25.01.2011